. | . |
Views of Titan - the quest for the surface
Titan, the largest Saturnian moon and the second largest moon of the solar system (only Jupiter's Ganymede is slightly larger), is the only satellite known with a substantial atmosphere. It is composed mainly of nitrogen (like that of the Earth) and also contains significant amounts of methane. Opaque orange hazes and clouds of complex organic molecules effectively shield the solid surface from view, cf. e.g. the Voyager images. Recent spectroscopic and radar observations suggest that there are huge surface reservoirs of liquid hydrocarbonates and a methane-based meteorological cycle similar to Earth's hydrological cycle. This makes Titan the only known object with rainfall and potential surface oceans other than the Earth and thus a tantalizing research object for the study of pre-biotic chemistry and the origin of life on Earth. The Huygens probe from the NASA/ESA Cassini-Huygens mission will enter Titan's atmosphere in early 2005 to make measurements of the physical and chemical conditions, hopefully surviving the descent to document the surface as well. Coordinated ground-based observations will provide essential support for the scientific return of the Cassini-Huygens encounter. However, only 8-10 m class telescopes with adaptive optics imaging systems or space-borne instruments can achieve sufficient image sharpness to attain a useful level of detail. The new map of a large part of Titan's surface, shown in PR Photo 11a/04, represents an important contribution in this direction.
A question of atmospheric windows The wavelengths used for such observations are critical for the amount of surface detail captured on the images. Optimally, one would look for a spectral band in which the atmosphere is completely transparent; a number of such "windows" are known to exist. But although the above observations were made in wavebands roughly matching atmospheric windows and do show surface features, they also include the light from different atmospheric layers. In a sense, they therefore correspond to viewing Titan's surface through a somewhat opaque screen or, more poetically, the sight by an ancient sailor, catching for the first time a glimpse of an unknown continent through the coastal haze. One narrow "window" is available in the near-infrared spectral region near wavelength 1.575 micron. In February 2004, an international research team [1] working at the ESO VLT at the Paranal Observatory (Chile) obtained images of Titan's surface through this spectral window with unprecedented spatial resolution and with the lowest contamination of atmospheric condensates to date. They accomplished this during six nights (February 2, 3, 5, 6, 7 and 8, 2004) at the time of the commissioning phase of a novel high-contrast imaging mode for the NACO adaptive optics instrument on the 8.2-m VLT YEPUN telescope, using the Simultaneous Differential Imager (SDI) [2]. This novel optical device provides four simultaneous high-resolution images (PR Photo 11b/04) at three wavelengths around a near-infrared atmospheric methane absorption feature. The main application of the SDI is high-contrast imaging for the search for substellar companions with methane in their atmosphere, e.g. brown dwarfs and giant exoplanets, near other stars. However, as the present photos demonstrate, it is also superbly suited for Titan imaging.
Mapping Titan's surface in unprecedented detail A new map of the surface of Titan (in cylindrical projection and covering most, but not all of the area imaged during these observations) is shown in PR Photo 11a/04. For this, the simultaneous "atmospheric" images (at waveband 1.625 micron) were "subtracted" from the "surface" images (1.575 and 1.600 micron) in order to remove any residual atmospheric features present in the latter. The ability to subtract simultaneous images is unique to the SDI camera. This truly unique map shows the fraction of sunlight reflected from the surface - bright areas reflect more light than the darker ones. The amount of reflection (in astronomical terms: the "albedo") depends on the composition and structure of the surface layer and it is not possible with this single-wavelength ("monochromatic") map alone to elucidate the true nature of those features. Nevertheless, recent radar observations with the Arecibo antenna have provided evidence for liquid surfaces on Titan, and the low-reflection areas (dark on PR Photos 11a/04 and 11f/04) could indicate the locations of those suspected reservoirs of liquid hydrocarbonates. They also provide a possible source for the replenishment of methane that is continuously lost in the atmosphere because of decomposition by the sunlight. Presumably, the bright, highly reflective regions are ice-covered highlands.
Provisional names of the new features Over the range of longitudes which have been mapped during the present observations (PR Photo 11a/04), it is obvious that the southern hemisphere of Titan is dominated by a single bright region centered at approximately 15 deg longitude. (Note that this is not the so-called "bright feature" seen in the HST images at longitude 80 - 130 deg, an area that was not covered during the present observations). The equatorial area displays the above mentioned, well-defined dark (low-reflection) structures, cf. PR Photo 11g/04. In order to facilitate their identification, the team decided to give these dark features provisional names - official names will be assigned at a later moment by the Working Group on Planetary System Nomenclature of the International Astronomical Union (IAU WGPSN). From left to right, the SDI team [1] has referred to these features informally as: the "lying H", the "dog" chasing a "ball", and the "dragon's head". The team expects to continue imaging and monitoring of Titan in the coming months, with the goal of assisting the Cassini-Huygens team in the interpretation and understanding of what will certainly be a rich and complex flow of information about this enigmatic moon. The team is composed of Markus Hartung (ESO-Chile), Laird M. Close (Steward Observatory, University of Arizona, Tucson, USA), Rainer Lenzen, Tom M. Herbst and Wolfgang Brandner (Max-Planck Institut for Astronomie, Heidelberg, Germany), Eric Nielsen and Beth Biller (Steward Observatory, University of Arizona, Tucson, USA), and Olivier Marco and Chris Lidman (ESO-Chile). Related Links More Images and Captions ESO SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Titan Casts Revealing Shadow Cambridge MA - Apr 06, 2004 A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |