![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Plants, pond scum, and even organisms that live where the sun doesn't shine have something that humans do not -- an enzyme that repairs DNA damaged by ultraviolet (UV) light. Cabell Jonas of Richmond, Va., an undergraduate honors student in biology at Virginia Tech, will report on the molecular details of the DNA-repair enzyme at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans. Her poster includes the novel discovery that the enzyme does not operate the same way in different organisms. UV light is one of the most prevalent causes of DNA damage. In humans, incidents of resulting disease -- in particular, skin cancer, are increasing as exposure to UV increases, says Sunyoung Kim, assistant professor of biochemistry at Virginia Tech. Since the human body does not have DNA photolyase, Kim and her students are studying the DNA-repair enzyme in other systems. "Our aim is to map the molecular interactions and understand the structural changes, with the eventual goal of being able to create or adapt this flavoenzyme from another organism for treatment of skin cancer in humans," says Kim. She explains that there are two different kinds of DNA repair. One is base incision repair -- the cell machinery gears up, cuts out the damaged section of DNA, and rebuilds it. The second uses DNA photolyase. "A Lone Ranger enzyme repairs the damage without all the machinery or a lot of team players." In two steps -- photoactivation and photo repair -- the flavoenzyme actually uses light to repair UV damage -- but from a different, visible part of the spectrum. During activation, a flavin adenine dinucleotide (FAD) molecule triggers a transfer of electrons from the flavin portion of the enzyme to the damaged DNA to carry out repair. "We've discovered that, depending on which organism the enzyme comes from, the transfer of electrons through the protein is a little different," says Kim. "That is novel because it is generally assumed -- and is a basis for bioinformatics, for instance -- that the same protein doing the same job, even in different organisms, performs in the same way. "But we are finding that this job of DNA repair is done by slightly different proteins in our two model organisms -- e. coli and cyanobacterium (once known as blue-green algae) -- and that the electrons take different paths to perform the repair." Related Links Virginia Tech SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() Maxwell Technologies, Inc. Microelectronics division is moving ahead with its strategy for providing radiation-tolerant components for the space satellite market. According to company officials the enhancement involves a multi-faceted approach of analysis, characterization, and mitigation.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |