. | . |
Pitt Researchers See Electron Waves In Motion For First Time
Both the ancient art of stained glass and the cutting-edge field of plasmonics rely on the oscillation of electrons in nanosized metal particles. When light shines on such particles, it excites the electromagnetic fields on the metal's surface, known as "surface plasmons," and causes its electrons to oscillate in waves - producing the rich hues of stained glass. But because electrons move nearly as fast as light, those oscillations have been difficult to observe and had never before been seen in motion. Now, in a paper published in the current issue of the journal Nano Letters, Pitt researchers have demonstrated a microscopy technique that allows the movement of the plasmons to be seen for the first time, at a resolution a trillion times better than conventional techniques. Hrvoje Petek, professor of physics and astronomy at Pitt, and Hong Koo Kim, Pitt professor of electrical and computer engineering, codirectors of Pitt's Institute of NanoScience and Engineering, showed in their paper, "Femtosecond Imaging of Surface Plasmon Dynamics in a Nanostructured Silver Film," that it is indeed possible to achieve high-resolution imaging through a combination of ultra-fast laser and electron optic methods. Although theoretically possible, this technique had never been demonstrated in practice. Petek and Kim used a pair of 10-femtosecond (one quadrillionth of a second) laser pulses to induce the emission of electrons from the sample, a nanostructured thin silver film. Scanning the pulse delay, they recorded a movie of surface plasmon fields at 330 attoseconds (quintillionths of a second) per frame. The video is available online at http://pubs.acs.org. Their research is a boon to the emerging field of plasmonics. Currently, semiconductor chips each contain "about a mile" of wires, said Petek. When electrons carry electrical signals through such wires they collide about every 10 nanometers (10-8 m). In part, this causes problems because the chips give off too much heat. The solution may be to send the signal as plasmon waves, which would lead to faster chips and less dissipation of energy, Petek said. Other researchers on the paper were Atsushi Kubo and Ken Onda, postdoctoral research associates in Pitt's Department of Physics and Astronomy, and Zhijun Sun and Yun S. Jung, doctoral students in Pitt's Department of Electrical and Computer Engineering. All are affiliated with the University's Institute of NanoScience and Engineering. Related Links University of Pittsburgh SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Liverpool Scientists Help To Solve The Mysteries Of Quarks Liverpool, UK (SPX) Jun 21, 2005 Particle physicists are embarking on a new attempt to solve the mysteries of quarks with the completion of the three most powerful supercomputers ever applied to this problem, including one in Edinburgh which scientists at the University of Liverpool helped to design and build.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |