. | . |
Nanotubes Offer Bright Future For Telecom Packet Switching
New York (UPI) Nov 22, 2005 Carbon tubes only nanometers or billionths of a meter in diameter could serve as ultra-bright light sources for telecommunications, IBM scientists told UPI's Nano World. Conventional solid-state light sources such as light-emitting diodes, or LEDs, bring together positive and negative charges. When those charges neutralize each other, they emit pulses of light, or photons. Materials suitable for such optical applications often are not ideal for electronic applications, said electronics researcher and materials scientist Jia Chen at IBM's research division in Yorktown Heights, N.Y. On the other hand, carbon nanotubes are superb electronics materials, and their physical qualities suggested they are potentially excellent optical materials as well, she explained. "Nowadays information mostly travels as photons in optical fibers deep beneath the ocean," Chen said. The hope is that carbon nanotubes could serve as construction blocks to help integrate optical and electronic components onto the same chip, greatly enhancing miniaturization in telecommunications devices. Moreover, as semiconductor-based electronics become ever smaller, "the metal wirings currently used to connect the different components on a single chip will suffer increasingly from problems such as lack of speed and unacceptable levels of power dissipation, eventually limiting the chip performance. These on-chip emitters can provide an attractive alternative as optical connections that potentially eliminate these problems," Chen said. Scientists had endeavored to create light sources from carbon nanotubes before, but earlier attempts led to very inefficient devices, Chen said. Prior designs introduced positive and negative charges simultaneously from opposite ends of the nanotubes, but injecting the same amounts of positive and negative charges at the same time "is not an easy task," she explained. "The chances that they meet each other and emit photons are quite low." Chen and her colleagues designed light sources that generate 100,000 times more photons per unit area per second than conventional LEDs do. Moreover, they are 1,000 times more efficient than prior carbon nanotube devices. This improved efficiency stems from a design that no longer injects positive and negative charges from opposite ends of nanotubes. Instead, the researchers suspend the nanotubes in surface-oxidized silicon wafers. This leads to high electric fields near the junction between the nanotubes and the wafers. In turn, electrons injected into the nanotubes pick up energy, creating negative-positive charge combinations that recombine to form light. Their findings appear in the Nov. 18 issue of the journal Science. The nanotubes emit light "with a wavelength of one to two micrometers, which is particularly valuable because it is the wavelength widely used in optical communications," said Phaedon Avouris, manager of nanometer-scale science technology at IBM's research division. Physical chemist Bruce Weisman at Rice University in Houston called the IBM findings "an important advance" that could accelerate applications for carbon nanotubes. All rights reserved. � 2005 United Press International. Sections of the information displayed on this page (dispatches, photographs, logos) are protected by intellectual property rights owned by United Press International.. As a consequence, you may not copy, reproduce, modify, transmit, publish, display or in any way commercially exploit any of the content of this section without the prior written consent of United Press International. Related Links SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Scientists Create Nanostructures Berlin (UPI) Nov 21, 2005 German scientists say they've found combining a scanning tunneling microscope and atoms bound to a surface can create nanostructures.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |