![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Tiny nanocables, 1,000 times smaller than a human hair, could become key parts of toxin detectors, miniaturized solar cells and powerful computer chips. The technique for making the nanocables was invented by UC Davis chemical engineers, led by Pieter Stroeve, professor of chemical engineering and materials science. They manufacture the cables in the nano-sized pores of a template membrane. The insides of the pores are coated with gold. Layers of other semiconductors, such as tellurium, cadmium sulfide or zinc sulfide, are electrochemically deposited in the gold tube until a solid cable forms, then the membrane is dissolved, leaving finished cables behind. Stroeve envisions many uses for these nanocables. For example, the cables' ability to conduct electricity changes when they are exposed to different chemicals or toxins. Earlier nano-devices could only detect whether a toxin was present, said Ruxandra Vidu, a postdoctoral scholar working with Stroeve. But nanocables will go further, measuring the quantity of toxins. Stroeve's team can also construct arrays of nanocables. "You put a copper tape on the tops of the nanocables before the template is dissolved," Stroeve said. "You're left with nanocables sticking up at right angles from the tape." These arrays have a very large surface area - 1000 times greater than on a flat device of the same size. They could be used to efficiently capture sunlight in a tiny solar cell. Nanocables could also be used to make computer chips more powerful by packing transistors closer together. Computers now contain silicon chips with metal transistors affixed to the surface. "With our new technique, we could embed transistors into the silicon chips to begin with," Stroeve said. The work is published online in the Journal of the American Chemical Society. Related Links UC Davis SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() Albany Nanotech and Advanced Micro Devices have entered into a joint R&D project to develop a new nanometrology capability for measuring the stress state in strained silicon, a material at the heart of high-performance microchips.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |