. | . |
Building Nano Sized DNA Structures
A new method to make very small patterns of DNA molecules on surfaces has been developed by chemists at the University of California, Davis, and Wayne State University, Detroit. The technique could allow faster and more powerful devices for DNA sequencing, biological sensors and disease diagnosis. The technique, called nanografting, can be used to make patterns of DNA that are up to a thousand times smaller than those in commercially available microarrays, said UC Davis chemist Gang-yu Liu. Liu developed the method with Christine Chow at Wayne State University and UC Davis graduate students Maozi Liu and Nabil Amro. "We believe these are the smallest nanostructures of DNA yet made," Liu said. They drew lines as small as 15 nanometers across by 150 nanometers long -- equivalent to eight DNA molecules across. The same method can be applied to make structures as small as two by four nanometers, or a few billionths of an inch, in size. Microarrays -- arrangements of small dots of DNA or other molecules on slides or chips -- have become a powerful tool in biomedical research. For example, a DNA array can be used to look at thousands of genes in a cell at the same time and see which are switched on or off. The patterns are made by coating a gold film with long, closely-packed molecules called thiols. The thiols attach to the gold through a sulfur atom at one end and stand upright. The researchers use an atomic force microscope probe -- essentially a very fine needle -- to scrape away some of the thiols. They add short pieces of DNA, called oligonucleotides, which have thiols attached at one end. The thiols stick the DNA onto the exposed gold head-first, leaving the rest of the DNA standing up above the thiol layer. The researchers showed that the DNA molecules were accessible and chemically active. The research is published in the August 2002 issue of the journal Nano Letters. Related LinksSpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Doing It By The Atoms Madison - Sep 09, 2002 In 1959, physics icon Richard Feynman, in a characteristic back-of-the-envelope calculation, predicted that all the words written in the history of the world could be contained in a cube of material one two-hundredths of an inch wide - provided those words were written with atoms. Genome.gov: Your Genetics Portal Bethesda - Jun 25, 2002 The National Human Genome Research Institute (NHGRI) has launched a totally new Web site complete with a snappy new Internet address - genome.gov. The streamlined Web site address makes it easy for users to access a comprehensive and authoritative government site focused on genomic research, including the international Human Genome Project slated for completion in April 2003.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |