. 24/7 Space News .
NASA Study Shows Water Could Create Gullies On Mars

Portion of MOC image M17-00423 showing the alcove, channel, and debris apron structures of recent gullies on Mars. Scale bar is 1km. See larger image.
Moffett Field CA (SPX) Aug 26, 2005
A NASA-led team will present its Mars gully findings at the American Astronomical Society's Division for Planetary Sciences annual meeting in Cambridge, England, Sept. 5, 2005.

"The gullies may be sites of near-surface water on present-day Mars and should be considered as prime astrobiological target sites for future exploration," ventured National Research Council scientist Jennifer Heldmann, principal author of the study who works at NASA Ames Research Center in California's Silicon Valley.

"The gully sites may also be of prime importance for human exploration of Mars because they may represent locations of relatively near surface liquid water, which can be accessed by crews drilling on the red planet," she added.

"If liquid water pops out onto Mars' surface, it can create short gullies about 550-yards (500-meters) long," Heldmann said. "We used a computer to simulate the flow of liquid water within gully channels," Heldmann explained.

"Our model indicates that these fluvially-carved gullies were formed in the low temperature and low pressure conditions of present-day Mars by the action of relatively pure liquid water," said Heldmann.

The science team found that the maximum length of gullies simulated in the computer models were comparable to the martian gullies studied. "We find that the short length of the gully features implies they did form under conditions similar to those on present-day Mars, with simultaneous freezing and rapid evaporation of nearly pure liquid water," Heldmann said.

In addition, images taken by the Mars Global Surveyor spacecraft show 'geologically young' small-scale features on the red planet that resemble terrestrial water-carved gullies, according to scientists.

"The young geologic age of these gullies is often thought to be a paradox, because liquid water is unstable at the martian surface," Heldmann said. At present martian air pressure and temperature, water will boil and freeze at very rapid rates, the scientists reported.

Team scientists noticed that images of some of Mars' gullies show that they taper off into very small debris fields � or no debris fields at all � suggesting that water rushing through the gullies rapidly froze and/or evaporated.

"In the martian case, fluid well above the boiling point (which is a very low temperature at Mars' low atmospheric pressure and air temperature) is suddenly exposed to the atmosphere," said Heldmann. "The difference between the vapor and ambient pressures relative to the ambient pressure is large, and flash boiling can occur, leading to a violent loss of fluid."

Scientists believe that ice probably would not accumulate in the gullies, because of the rapid evaporation of water and relatively high flow velocities, but in some cases, some ice could be carried downstream. The researchers studied computer simulations of both scenarios.

"We tested our model using known flow parameters and environmental conditions of perennial saline springs in the Mars analog environment of the Canadian High Arctic," Heldmann noted.

In addition to Heldmann, Chris McKay, also of NASA Ames; Brian Toon, Michael Mellon and John Pitlick, of the University of Colorado, Boulder; Wayne Pollard, of McGill University, Montreal, Canada; and Dale Andersen, of the SETI Institute, Mountain View, Calif., are study co-authors.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Mars Has Been In Deep Freeze For Past Four Billion Years, Study Shows
Pasadena CA (SPX) Jul 19, 2005
The current mean temperature on the equator of Mars is a blustery 69 degrees below zero Fahrenheit. Scientists have long thought that the Red Planet was once temperate enough for water to have existed on the surface, and for life to possibly have evolved. But a new study by Caltech and MIT scientists gives this idea the cold shoulder.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.