. | . |
AFRL Computer Guides NASA Rovers to Mars
Radiation-resistant computers developed here by the Air Force Research Laboratory (AFRL) helped not only steer one of NASA's Mars Exploration Rovers to the red planet last week, they also guided it to a safe and spectacular landing on Mar's rocky surface. Another landing is scheduled for later in the month. AFRL's Rad6000 32-bit microprocessors, manufactured for the Air Force by BAE systems, controlled the spacecraft during its flight from Earth. The tiny microchips will also orchestrate the Rovers -- named Spirit and Opportunity -- as they move about the planet searching for signs that water might once have existed on our neighbor. "NASA chose AFRL microprocessors because they are proven reliable, rugged, and fully compatible with their systems," said Creigh Gordon, an engineer assigned to the AFRL's Space Vehicles Directorate. These computers can withstand the harsh radiation environment of space and operate reliably over long-term missions. They control all data stream telemetry between the spacecraft and controllers on the ground. The Rad6000 was not only the world's first radiation-hardened 32-bit microprocessor; it was also the most complex, containing more than one million transistors. And transistors run the show. Like neural connections in the human brain, transistors inside computer chips help manage the flow of electrical energy by directing it through a maze of silicon-based circuits. Transistors act like switches at electronic junctions to speed electrons to their intended destinations so that desired spacecraft and rover functions can be performed. Constant bombardment by radiation, however, generates unwanted electrical charges inside transistors, building to the point that the transistor, or switch, can no longer control the electron flow. Consequently, overcharged transistors shut down, and failed electronics mean dead missions and the loss of hundreds of millions of dollars. Much of AFRL's work in electronic spacecraft components prevents such losses. "Through our efforts within the Space Vehicles Directorate, the Air Force has made significant investments into radiation hardening fabrication technologies and the space electronics based on them," said Gordon. "Contractors such as BAE Systems and others now have the ability to manufacture such devices, which results in better products for us, NASA, the Defense Department, as well as the commercial customer," he added. Before AFRL researchers stepped in a few years ago, Gordon explained, the Defense Department and NASA paid from $50 million to $100 million for each processor in development and manufacturing costs. Now, after AFRL involvement, the price of a typical processing module dropped to between $500 thousand and $2 million and is available as off-the-shelf hardware. As a direct result, microprocessor performance has improved a hundredfold. "That's an additional value of a military laboratory helping to transform and transfer technology to military and civilian users -- it maximizes taxpayer investment," Gordon said. "By creating new circuit designs and the processes by which they are constructed, using different materials, and by building-in safeguards such as back-up subsystems, the Air Force-industry team has also significantly increased the life span for spacecraft missions by making electronic systems such as microprocessors more resilient to the catastrophic effects of radiation," said Gordon. More than 60 Air Force, Defense Department, NASA, and commercial space systems are now using this technology and better than 90 percent of satellites launched today rely on radiation-hardened processors developed by AFRL's Space Vehicles Directorate. Related Links Air Force Research Laboratory Mars at JPL MERs at Cornell SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Interview with Nathalie Cabrol Pasadena - Sol 4-A, 2004 In this interview with Astrobiology Magazine's managing editor Henry Bortman, conducted just after NASA released the first high-resolution color picture of Gusev on January 6th, Nathalie Cabrol talks about her historic interest in the site and what stories she thinks Gusev Crater might have to tell about Mars.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |