. 24/7 Space News .
Engineers Clear Bottleneck In Production Of Hydrogen

of course we are going to solve the oil problem
Madison WI (SPX) Sep 09, 2004
Carbon monoxide, or CO, has long been a major technical barrier to the efficient operation of fuel cells. But now, chemical and biological engineers at the University of Wisconsin-Madison have not only cleared that barrier - they also have discovered a method to capture carbon monoxide's energy.

To be useful in a power-generating fuel cell, hydrocarbons such as gasoline, natural gas or ethanol must be reformed into a hydrogen-rich gas.

A large, costly and critical step to this process requires generating steam and reacting it with carbon monoxide (CO).

This process, called water-gas shift, produces hydrogen and carbon dioxide (CO2). Additional steps then are taken to reduce the CO levels further before the hydrogen enters a fuel cell.

James Dumesic, professor of chemical and biological engineering , postdoctoral researcher Won Bae Kim, and graduate students Tobias Voitl and Gabriel Rodriguez-Rivera eliminated the water-gas shift reaction from the process, removing the need to transport and vaporize liquid water in the production of energy for portable applications.

The team, as reported in the Aug. 27 issue of Science, uses an environmentally benign polyoxometalate (POM) compound to oxidize CO in liquid water at room temperature.

The compound not only removes CO from gas streams for fuel cells, but also converts the energy content of CO into a liquid that subsequently can be used to power a fuel cell.

"CO has essentially as much energy as hydrogen," Dumesic says.

"It has a lot of energy in it. If you take a hydrocarbon and partially oxidize it at high temperature, it primarily makes CO and hydrogen. Conventional systems follow that with a series of these 'water-gas shift' steps."

"Our discovery has the potential of eliminating those steps. Instead, you can send the CO through our process, which works efficiently at room temperature, and takes the CO out of the gas to make energy."

The research team says the process is especially promising for producing electrical energy from renewable biomass-derived oxygenated hydrocarbons - such as ethylene glycol derived from corn - because these fuels generate H2 and CO in nearly equal amounts during catalytic decomposition.

The hydrogen could be used directly in a proton-exchange-membrane fuel cell operating at 50 percent efficiency, and the remaining CO could be converted to electricity via the researchers' new process.

The overall efficiency of such a system is equal to 40 percent and, unlike traditional ethylene glycol reforming, does not require water. The overall efficiency is equivalent to 60 percent of the energy content of octane.

Dumesic's team believes the advance will make possible a new generation of inexpensive fuel cells operating with solutions of reduced POM compounds. While higher current densities can be achieved in fuel cells using electrodes containing precious metals, the researchers found that good current densities can be generated using a simple carbon anode.

Related Links
University of Wisconsin-Madison
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

NIST Unveils Chip-Scale Atomic Clock
Gaithersburg MD (SPX) Aug 30, 2004
The heart of a minuscule atomic clock - believed to be 100 times smaller than any other atomic clock- has been demonstrated by scientists at the Commerce Department's National Institute of Standards and Technology (NIST), opening the door to atomically precise timekeeping in portable, battery-powered devices for secure wireless communications, more precise navigation and other applications.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.