. | . |
XMM-Newton Closes In On Space's Exotic Matter
A fraction of a second after the Big Bang, all the primordial soup of matter in the Universe was 'broken' into its most fundamental constituents. It was thought to have disappeared forever. However scientists strongly suspect that the exotic soup of dissolved matter can still be found in today's Universe, in the core of certain very dense objects called neutron stars. With ESA's space telescope XMM-Newton, they are now closer to test this idea. For the first time, XMM-Newton has been able to measure the influence of the gravitational field of a neutron star on the light it emits. This measurement provides much better insight into these objects.
Neutron stars are among the densest objects in the Universe.
How to find out? Scientists have spent the last decades trying to identify the nature of matter in neutron stars. To do this, they need to know some important parameters, very precisely. If you know a star's mass and radius, or the relationship between them, you can obtain its 'compactness'. However, no instrument was advanced enough to perform the measurements needed, until now. Thanks to ESA's XMM-Newton observatory, for the first time, astronomers have been able to measure the mass-to-radius ratio of a neutron star and acquire the first clues about its composition. These clues suggest that the neutron star contains normal, non-exotic matter, although they are not conclusive. The authors say this is a 'key first step' and that they will keep on with the search. The way they got this measurement is a first in astronomical observation and it is considered a huge achievement. The method consists of determining the compactness of the neutron star in an indirect way. The gravitational pull of a neutron star is immense -- thousands of million times stronger than the Earth's. This makes the light particles emitted by the neutron star lose energy. This energy loss is called a gravitational 'red shift'. The measurement of this red shift by XMM-Newton indicated the strength of the gravitational pull, and revealed the star's compactness. "This is a highly precise measurement that could not have been done without both the high sensitivity of XMM-Newton and its ability to distinguish details." says Fred Jansen, ESA's XMM-Newton Project Scientist. According to the main author of the discovery, Jean Cottam of NASA Goddard Space Flight Center (Greenbelt, United States), "attempts to measure the gravitational red shift were made right after Einstein published the General Theory of relativity, but no one had ever been able to measure the effect in a neutron star, where it was supposed to be huge. This has now been confirmed." Related Links More about XMM-Newton SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express In Search Of A Universal Dark Secret Boston - Aug 22, 2002 Physics graduate student Taotao Fang's thesis project in the late 1990s was to search for a hot, diffuse gas located between galaxies. The gas forms a diffuse cosmic web connecting clusters of galaxies.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |