. | . |
Atmospheric Water Clusters Provide Evidence Of Global Warming
Researchers at Hamilton College have identified several methods for successfully determining the structures and thermodynamic values for the formation of atmospheric water clusters, which scientists have speculated may accelerate global warming. The Hamilton team's findings were published in the March 3 issue of the Journal of the American Chemical Society. The greenhouse effect is caused by molecules that absorb infrared radiation released from the Earth's surface, trapping heat in the atmosphere. Water acts as a greenhouse gas because it is one of the molecules that can absorb infrared radiation and cause warming. "Our research supports the suggestion that in a global warming scenario higher temperatures will lead to increased absorption of solar radiation by water clusters," said lead author, George Shields, the Winslow Professor of Chemistry at Hamilton College. "The prediction that higher order water clusters (trimers, tetramers, and pentamers) are present in the atmosphere is significant because it shows that these entities must be considered as key players in atmospheric processes." Previous research has hypothesized that water clusters (two or more water molecules held together by hydrogen bonds) could catalyze acid rain or the formation of aerosol in the atmosphere, and even lead to acceleration of the Greenhouse effect. All of these ideas depend on the presence of water clusters in the troposphere, the region of the atmosphere that is directly heated by the Earth's surface. The Hamilton group can now predict the concentration of water clusters present in the troposphere. Large water clusters have for some time been thought to catalyze reactions which have implications for the chemistry that takes place in the atmosphere. A paper in the June 27, 2003 issue of Science documented the first detection of a water dimer (two hydrogen bonded water molecules) in the troposphere. Shields said, "Once we knew the dimers were present, we investigated whether larger water clusters might also be involved in a variety of atmospheric chemistry processes. We started by using high level quantum chemistry methods to predict dimer concentrations that would be found on a warm, humid day. "The accuracy of our dimer calculation, which matched the experimentalists' detection of water dimer concentrations under the same conditions, led us to calculate the concentration of other water clusters in the troposphere." The researchers found that water clusters consisting of cyclic trimers, cyclic tetramers, and cyclic pentamers should all be detectable in the lower troposphere. The Hamilton researchers used the documented information on water cluster structures to investigate the effectiveness of various model chemistries in modeling gas-phase water cluster formation. The performance of these chemistries was compared against previous calculations, and the Hamilton team found that thermodynamic calculations by Gaussian-2, Gaussian-3 and Complete Basis Set-APNO chemistries compared quite well to the prior calculations. (Experimentalists reported a value of 6 x 10^14 dimers per cubic centimeter at 292 K on a 100% humid day. The Hamilton study predicted a value of 4 x 10^14 dimers per cubic centimeter at 292 K.) Related Links Hamilton College MERCURY Supercomputer Consortium SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Global Warming To Squeeze Western Mountains Dry By 2050 Seattle - Feb 18, 2004 Global warming will diminish the amount of water stored as snow in the Western United States by up to 70 percent in the coastal mountains over the next 50 years, according to a new climate change model released here today.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |