. | . |
Atlanta - January 17, 2000 - Culminating 25 years of searching by astronomers, researchers at Massachusetts Institute of Technology say that a faint X-ray source, newly detected by NASA's Chandra X-ray Observatory, may be the long-sought X-ray emission from a known supermassive black hole at the center of our galaxy. Frederick K. Baganoff and colleagues from Pennsylvania State University, University Park, and the University of California, Los Angeles, will present their findings today in Atlanta at the 195th national meeting of the American Astronomical Society. Baganoff, lead scientist for the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer (ACIS) team's "Sagittarius A* and the Galactic Center" project and postdoctoral research associate at MIT, said that the precise positional coincidence between the new X-ray source and the radio position of a long-known source called Sagittarius A* "encourages us to believe that the two are the same." Sagittarius A* is a point-like, variable radio source at the center of our galaxy. It looks like a faint quasar and is believed to be powered by gaseous matter falling into a supermassive black hole with 2.6 million times the mass of our sun. Chandra's remarkable detection of this X-ray source has placed astronomers within a couple of years of a coveted prize: measuring the spectrum of energy produced by Sagittarius A* to determine in detail how the supermassive black hole that powers it works. "The race to be the first to detect X-rays from Sagittarius A* is one of the hottest and longest-running in all of X-ray astronomy," Baganoff said. "Theorists are eager to hear the results of our observation so they can test their ideas." But now that an X-ray source close to Sagittarius A* has been found, it has taken researchers by surprise by being much fainter than expected. "There must be something unusual about the environment around this black hole that affects how it is fed and how the gravitational energy released from the infalling matter is converted into the X-ray light that we see," Baganoff said. "This new result provides fresh insight that will no doubt stir heated debates on these issues. "Chandra's sensitivity is 20 times better than achieved with the best previous X-ray telescopes," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Penn State University and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrometer (ACIS) X-ray camera, which acquired the data. "This sensitivity, plus the superior spatial resolution of Chandra's mirrors, make Chandra the perfect tool for studying this faint X-ray source in its crowded field." "The luminosity of the X-ray source we have discovered already is a factor of five fainter than previously thought, based on observations from an earlier X-ray satelllite," Baganoff said. "This poses a problem for theorists. The galactic center is a crowded place. If we were to find that most or all of the X-ray emission is not from Sagittarius A*, then we will have shown conclusively that all current models from Sagittarius A* need to be rethought from the ground up." Astronomers believe that most galaxies harbor massive black holes at their centers. Many of these black holes are thought to produce powerful and brilliant point-like sources of light that astronomers call quasars and active galactic nuclei. Why the center of our galaxy is so dim is a long-standing puzzle. Optical telescopes such as the Hubble Space Telescope cannot see the center of our galaxy, which is enshrouded in thick clouds of dust and gas in the plane of the galaxy. However, hot gas and charged particles moving at nearly the speed of light produce X-rays that penetrate this shroud. Only a few months after its launch, Chandra accomplished what no other optical or X-ray satellite was able to do: separate the emissions from the surrounding hot gas and nearby compact sources that prevented other satellites from detecting this new X-ray source. Mark Morris of the University of California at Los Angeles, who has studied this region intensely for 20 years, called Chandra's data "a gold mine" for astronomers. "With more observing time on Chandra in the next two or three years, we will be able to build up a spectrum that will allow us to rule out various classes of objects and either confirm or deny Sagittarius A* as the origin of the X-ray emission," Baganoff said. "If we show that the emission is from a supermassive black hole, we will then be set to begin a detailed study of the X-ray emission from the nearest analog of a quasar or active galactic nucleus." Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, was conceived and developed for NASA by Penn State University and MIT under the leadership of Penn State Professor Gordon Garmire.
SPACE SCIENCE
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |