. 24/7 Space News .
New Radar Will Slice Through The Ice
 San Francisco - December 14, 1999 - A new technique using ice-penetrating radar is allowing scientists for the first time to reveal long-ago changes in West Antarctic ice streams, rivers of ice believed to be linked to the stability of the massive West Antarctic Ice Sheet. Disintegration of the ice sheet could gradually increase global sea levels 15 to 20 feet.

In the past, changes in the ice streams were determined from observing surface features, which only provided information for a few hundred years. Evidence of changes from a more distant past was carried away in the streams' relatively fast flow. Ice streams move at 0.5 to 1 kilometer a year, while the rest of the ice in the sheet moves a few meters or less per year.

Now, radar measurements of internal layers in the islands of slow-moving ice between the streams allow scientists to look at ice stream changes much farther back in time, said Nadine Nereson, a geophysics research associate at the University of Washington who worked with other scientists to develop the technique.

The five primary ice streams within the 360,000-square-mile West Antarctic Ice Sheet are labeled A through E, and the three most prominent ridges are called Siple Dome (between streams C and D) and Ridges BC and DE (named for the streams between which they lie).

The shape of layers beneath Siple Dome indicates its high point has been moving to the north. Other evidence suggests the movement likely was caused by thinning of Ice Stream C, at the southern edge of Siple Dome, before it stopped flowing rapidly about 150 years ago. Radar data from Siple Dome and ridges BC and DE in 1998 have enabled Nereson and her colleagues to analyze the pattern of change in the thickness of the ice stream system all along the Siple Coast during the past several thousand years.

"The most exciting finding is that Ice Stream B may have thinned by nearly 200 meters relative to Ice Stream C in the 1,000 years," she said.

Nereson presented the findings during a news conference at the fall meeting of the American Geophysical Union in San Francisco today (Dec. 13). She and Charles Raymond, a UW geophysics professor and principal investigator for the project, found evidence that the divide position on the ridge between ice streams B and C is the least stable of all the ridges, suggesting significant changes in the ice streams that border the ridge.

The technique of using radar to map the annual layers of glacial ice was described earlier this year in the journal Nature by UW geophysicist Edwin Waddington and colleagues from the British Antarctic Survey. Their radar images showed an arch in the layers beneath an ice divide. They called such arches "Raymond Bumps" because Nereson's co-author first postulated their existence in 1983. He showed that ice deep under an ice divide should be very hard and slow to flow, so the upper layers would tend to drape themselves over it.

The new technique looks at how an ice divide is affected by the changing depth of nearby ice streams. Radar measurements made at Siple Dome in 1994 and 1996 showed a significant Raymond bump, indicating the ice streams at its boundaries are relatively stable, Nereson said.

Preliminary evidence from data gathered in 1998 indicates Ridge BC has almost no Raymond bump, indicating that streams B and C fluctuated greatly causing the divide to move frequently. The data shows Ridge DE showed a slight Raymond bump, suggesting slightly more stability. It is not yet certain, however, whether the evidence from the other two ridges can be interpreted as clearly as that from Siple Dome, Nereson said.

The work, funded by the National Science Foundation, could help determine whether the West Antarctic Ice Sheet is disintegrating, as some have suggested, or is instead becoming more stable.

Evidence that a natural cycle has thinned the ice sheet for thousands of years and could bring its complete demise about 7,000 years from now was presented recently in the journal Science by a team led by UW geophysicist Howard Conway.

TERRADAILY.COM
Iceberg Continues Toward South America
B10A Santiago (AFP) Oct 18, 1999 - The gigantic iceberg that broke off from the Antarctic in 1992 continues to drift toward the south Atlantic, the Chilean Antarctic Institute annouced Friday. On Wednesday, the iceberg, dubbed "B10A," was situated at 58.58 degrees south and 55.34 degrees west, heading toward the northeast at between seven and nine nautical miles a day, according to satellite measurments. If the iceberg's trajectory does not vary in the next month, it will approach the Falkland Islands, 3,000 kilometers (1,800 miles) east of Argentina.

  • Antarctica's Spectacular Rivers Of Ice
  • Goddard Maps Antarctica With RadarSat
  • Antarctic Ice Shelves Breaking Up




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.