Subscribe free to our newsletters via your
. 24/7 Space News .




PHYSICS NEWS
XMM-Newton Line Detection Provides New Tool To Probe Extreme Gravity
by Staff Writers
Paris, France (ESA) Jun 22, 2010


This illustration of 4U 0614+091 depicts the accretion disc around the neutron star, with material flowing onto it from the white dwarf companion, and symmetrical jets of relativistic matter ejected perpendicular to both sides of the disc. X-ray photons irradiating the disc are reflected by the material within it. As the gas in the disc contains a wealth of hot electrons, photons scattering off these electrons gain energy, resulting in a broadening of the spectral lines towards higher energies. Gravitational redshift and the relativistic Doppler effect broaden the spectral lines towards lower energies - a signature of the strong gravitational field of the neutron star. Copyright: ESA. For a larger version of this image please go here.

A long-sought-after emission line of oxygen, carrying the imprint of strong gravitational fields, has been discovered in the XMM-Newton spectrum of an exotic binary system composed of two stellar remnants, a neutron star and a white dwarf. Astronomers can use this line to probe extreme gravity effects in the region close to the surface of a neutron star.

Stellar remnants are the last evolutionary step of the life of stars which, after having burned their nuclear fuel, collapse into very compact and exotic objects - white dwarfs, neutron stars and black holes, depending on the mass of the stars.

With an enormous mass contained in a very restricted space, these objects are extremely dense; in particular, neutron stars and black holes give rise to very strong gravitational fields and thus prove to be excellent testbeds for Einstein's theory of general relativity.

Stars often come in pairs, and neutron stars and black holes are no exception, often being found as one component of a binary system. Due to the strong gravitational attraction that the compact remnant exerts on its companion, material from the latter flows onto the remnant forming an accretion disc.

As the material in the disc spirals around the remnant, it is heated up to millions of degrees - because of internal friction - and produces copious amounts of X-rays. These systems are thus referred to as X-ray binaries.

The object of this study, 4U 0614+091, is a very special X-ray binary, consisting of two remnants, namely a neutron star accreting mass from a white dwarf. The fact that the companion star is also a compact object is evident from the exceptionally short orbital period of the system: in fact, the two objects orbit around each other in about 50 minutes, which identifies the source as an Ultra-Compact X-ray Binary (UCXB).

Due to their compact nature, it is virtually impossible to directly image the immediate vicinity of a neutron star and its accretion disc. Fortunately, spectroscopy of these systems yields plenty of information to fill the gap and represents a unique tool to investigate the dynamics of the accretion process in X-ray binaries.

The material surrounding the neutron star, irradiated by X-rays, reflects this radiation and, during the process, ions of heavy elements, such as oxygen and iron, that are present in the disc leave their imprint on the spectrum of the reflected light as characteristic emission lines. The profile of these so-called 'fluorescent' lines is deeply influenced by the strong gravitational field of the compact remnant, hence their detection is extremely important for testing the strong regime of general relativity.

"The only line so far observed in X-ray binaries was the iron line, which corresponds to an energy of about 6.4 keV," explains Oliwia Madej, a PhD student at the Netherlands Institute for Space Research (SRON) and Utrecht University who led the study that detected, for the first time, a broad line of oxygen in the spectra of 4U 0614+091.

"This line is at a lower energy than the iron one - about 0.7 keV - and represents not only an additional diagnostic of the inner parts of the system, but actually a more powerful one. "The advantage is that instruments are able to collect more photons at the energy of the oxygen line than at the energy of the iron line, resulting in a better quality spectrum," she adds.

The outstanding result relies on both low- and high-resolution spectra of 4U 0614+091 collected by XMM-Newton. "The high-resolution of the spectra delivered by the Reflection Grating Spectrometers (RGS) was crucial for isolating the long-sought-after oxygen signature amongst the plethora of spectral features," comments Norbert Schartel, XMM-Newton Project Scientist.

The line, which is intrinsically narrow, appears broadened towards lower as well as higher energies. Relativistic effects are responsible for the broadening towards lower energies through a combination of gravitational redshift - as photons lose energy as they escape the strong gravitational field of the neutron star- and relativistic Doppler effect.

"The broadening towards higher energies is interpreted, instead, in terms of photons scattering off the very hot electrons present in the disc and gaining energy through this process," explains Peter Jonker from SRON, one of Madej's PhD supervisors.

By studying the profile of the oxygen line in very great detail, it is possible to infer a wealth of information about the accretion disc within a few to a few tens of neutron star radii, corresponding to a distance of only a few kilometres to several tens of kilometres from the neutron star's surface. Probing these regions allows us to test Einstein's general relativity in an extreme environment, where the gravity is immensely stronger than in our Solar System.

"It is amazing how Nature provides us with astronomical sources that are exceptional laboratories to study how matter behaves in such a strong gravitational field, so dense that one teaspoonful would weigh a billion tons on Earth," comments Schartel. "Our role is to figure out better and better tools to observe these sources and uncover all the information they conceal."

.


Related Links
SRON Netherlands Institute for Space Research
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








PHYSICS NEWS
Purdue To Lead NASA Study On Cells In Microgravity
West Lafayette IN (SPX) Jun 08, 2010
NASA has awarded a $2 million project to Purdue University for a microsatellite experiment to determine how plant cells react to different gravity situations. Marshall Porterfield, a professor of agricultural and biological engineering and horticulture and landscape architecture, is developing lab-on-a-chip technology that allows for the study and measurement of microscopic cellular sample ... read more


PHYSICS NEWS
Moon Whets Appetite For Water

Water Content Of Moon's Interior Underestimated

Model Helps Search For Moon Dust Fountains

NASA Langley to Break Ground on Hydro Impact Basin

PHYSICS NEWS
Spirit Catching More Rays

Opportunity Breaks The 13 Mile Mark

Middle-School Project Discovers Cave Skylight On Mars

UK Space Agency Funds International Mars Rover

PHYSICS NEWS
President Obama Proposes Additional Financing For Growth And Jobs

NASA Deputy Administrator Stresses Importance Of International Cooperation

Orion Spacecraft Takes Shape

There's More Than One String To The Avionics Testing Fiddle

PHYSICS NEWS
China Sends Research Satellite Into Space

China eyes Argentina for space antenna

Seven More For Shenzhou

China Signs Up First Female Astronauts

PHYSICS NEWS
Russian, US astronauts dock with ISS: official

Russian, US astronauts dock with ISS: official

Three New Expedition 24 Crew Members Dock With ISS

New ISS Crew Members Prepare For Docking

PHYSICS NEWS
Ariane 5 Has Arabsat-5A and COMS In The Launch Zone

Next Ariane 5 Mission Cleared For Liftoff

Mission Preparations Move Forward For Next Ariane 5 Mission

Astrium: Prime Contractor For All Phases Of The 51st Ariane 5 Launch

PHYSICS NEWS
Kepler Data On Potential Extrasolar Planets Released

CoRoT Unveils A Rich Assortment Of New Exoplanets

Exoplanet Caught On The Move

'Out Of Whack' Planetary System

PHYSICS NEWS
SES-1 Satellite Of SES WORLD SKIES Now Operational

Mobile phones make movies at Paris festival

Radio Signals Research Scans New Horizons

Asians make the most payments with mobile phones: research




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement