. 24/7 Space News .
CHIP TECH
Wiggling atoms switch the electric polarization of crystals
by Staff Writers
Berlin, Germany (SPX) Apr 22, 2018

This is a crystal lattice of ferroelectric ammonium sulfate [(NH4)2SO4] with tilted ammonium (NH4+) tetrahedra (nitrogen: blue, hydrogen: white) and sulfate (SO42-) tetrahedra (sulfur: yellow, oxygen: red). The green arrow shows the direction of macroscopic polarization P. Blue arrows: local dipoles between sulphur and oxygen atoms. The electron density maps shown in the bottom left panel, in Fig. 2, and the movie are taken in the plane shown in grey. Bottom left: Stationary electron density of sulfur and oxygen atoms, displaying high values on the sulfur (red) and smaller values on the oxygens (yellow). Bottom right: Change of local dipoles at a delay time of 2.8 picoseconds (ps) after excitation of the ammonium sulfate crystallites. An anisotropic shift of charge reduces the dipole pointing to the right and increases the other 3 dipoles.

Ferroelectric crystals display a macroscopic electric polarization, a superposition of many dipoles at the atomic scale which originate from spatially separated electrons and atomic nuclei.

The macroscopic polarization is expected to change when the atoms are set in motion but the connection between polarization and atomic motions has remained unknown. A time-resolved x-ray experiment now elucidates that tiny atomic vibrations shift negative charges over a 1000 times larger distance between atoms and switch the macroscopic polarization on a time scale of a millionth of a millionth of a second.

Ferroelectric materials have received strong interest for applications in electronic sensors, memories, and switching devices. In this context, fast and controlled changes of their electric properties are essential for implementing specific functions efficiently.

This calls for understanding the connection between atomic structure and macroscopic electric properties, including the physical mechanisms governing the fastest possible dynamics of macroscopic electric polarizations.

Researchers from the Max Born Institute in Berlin have now demonstrated how atomic vibrations modulate the macroscopic electric polarization of the prototype ferroelectric ammonium sulphate [Fig. 1] on a time scale of a few picoseconds (1 picosecond (ps) = 1 millionth of a millionth of a second).

In the current issue of the journal Structural Dynamics [5, 024501 (2018)], they report an ultrafast x-ray experiment which allows for mapping the motion of charges over distances on the order of the diameter of an atom (10 to the power of minus 10 m = 100 picometers) in a quantitative way. In the measurements, an ultrashort excitation pulse sets the atoms of the material, a powder of small crystallites, into vibration.

A time-delayed hard x-ray pulse is diffracted from the excited sample and measures the momentary atomic arrangement in form of an x-ray powder diffraction pattern. The sequence of such snapshots represents a movie of the so-called electron-density map from which the spatial distribution of electrons and atomic vibrations are derived for each instant in time.

The electron density maps show that electrons move over distances of 10 to the power of minus 10 m between atoms which are more than a thousand times larger than their displacements during the vibrations [Fig. 3].

This behavior is due to the complex interplay of local electric fields with the polarizable electron clouds around the atoms and determines the momentary electric dipole at the atomic scale.

Applying a novel theoretical concept, the time-dependent charge distribution in the atomic world is linked to the macroscopic electric polarization [Fig. 3]. The latter is strongly modulated by the tiny atomic vibrations and fully reverses its sign in time with the atomic motions.

The modulation frequency of 300 GHz is set by the frequency of the atomic vibrations and corresponds to a full reversal of the microscopic polarization within 1.5 ps, much faster than any existing ferroelectric switching device. At the surface of a crystallite, the maximum electric polarization generates an electric field of approximately 700 million volts per meter.

The results establish time-resolved ultrafast x-ray diffraction as a method for linking atomic-scale charge dynamics to macroscopic electric properties. This novel strategy allows for testing quantum-mechanical calculations of electric properties and for characterizing a large class of polar and/or ionic materials in view of their potential for high-speed electronics.

Research paper


Related Links
Forschungsverbund Berlin
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Sensor strategy a boon for synthetic biology
Houston TX (SPX) Apr 22, 2018
Rice University scientists who say biological sensors aren't sensitive enough are doing something about it. The lab of synthetic biologist Jeffrey Tabor has introduced a new technique to dial up or down the sensitivity of two-component systems - a class of proteins that bacteria use to sense a wide variety of stimuli. The technique could enable the engineering of tailor-made biosensors for diagnostic gut bacteria, detection of environmental pollutants or automated control of nutrient levels ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
China's 'makers' battle mistrust in hi-tech community

New research seeks to optimize space travel efficiency

US Senate narrowly confirms Trump's new NASA chief

Cosmonautics demonstrates how US, Russia should work together

CHIP TECH
Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

New DARPA Challenge Seeks Flexible and Responsive Launch Solutions

Lockheed awarded $928M for hypersonic strike weapon

SpaceX blasts off NASA's new planet-hunter, TESS

CHIP TECH
SwRI's Martian moons model indicates formation following large impact

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

US, Russia likely to go to Mars Together, former NASA astronaut says

NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

CHIP TECH
The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

China to launch Long March-5 Y3 rocket in late 2018

Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

CHIP TECH
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

CHIP TECH
Cheap 3-D printer can produce self-folding materials

Spider silk key to new bone-fixing composite

New type of opal formed by common seaweed discovered

Army engineers develop technique to make adaptive materials

CHIP TECH
Are we alone? NASA's new planet hunter aims to find out

We think we're the first advanced earthlings - but how do we really know?

Newly discovered salty subglacial lakes could help search for life in solar system

SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

CHIP TECH
Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.