. | . |
What gives meteorites their shape by Staff Writers New York NY (SPX) Jul 23, 2019
Meteoroids coming from outer space are randomly shaped, but many of these, which land on earth as meteorites, are found to be carved into cones. Scientists have now figured out how the physics of flight in the atmosphere leads to this transformation. The progression, discovered through a series of replication experiments in New York University's Applied Mathematics Lab, involves melting and erosion during flight that ultimately results in an ideal shape as meteoroids hurl through the atmosphere. The findings are reported in the journal Proceedings of the National Academy of Sciences (PNAS). "Slender or narrow cones flip over and tumble, while broad cones flutter and rock back and forth, but we discovered between these are cones that fly perfectly straight with their point or apex leading," explains Leif Ristroph, an assistant professor in NYU's Courant Institute of Mathematical Sciences, who led the study. "Amazingly, these 'Goldilocks' cones of the 'just right' angles exactly match the shapes of eroded clay resulting from our experiments and of actual conical meteorites." "By showing how the shape of an object affects its ability to fly straight, our study sheds some light on this long-standing mystery about why so many meteorites that arrive on Earth are cone shaped," he adds. The forces behind the peculiar shapes of meteorites, which are meteors or "shooting stars" that survive the fiery flight through the atmosphere and land on Earth, have long been a mystery. "The shapes of meteorites are not as they are in space, since they are actually melted, eroded, and reshaped by atmospheric flight," explains Ristroph. "While most meteorites are randomly shaped 'blobs,' surprisingly many--some say about 25 percent--are 'oriented meteorites,' and complete samples of these look almost like perfect cones." To explore the forces that produce cone-shaped meteorites, the researchers, who included Jun Zhang, a professor of physics and mathematics at the Courant Institute and NYU Shanghai, replicated meteoroids traveling through outer space: clay objects, attached to a rod, served as "mock meteorites" that erode while moving through water. The clay objects held in the water current were eventually carved into cones of the same angularity as conical meteorites--not too slender and not too broad. However, the researchers recognized the limitations of this experimental design: unlike the clay objects, actual flying meteoroids are not held in a fixed position and can freely rotate, tumble, and spin. This distinction raised the following question: what allows meteorites to keep a fixed orientation and successfully reach Earth? The team, which also included Khunsa Amin and Kevin Hu, both NYU undergraduates, and Jinzi Huang, an NYU doctoral student at the time of the work, then conducted additional experiments in which they examined how different shaped cones fell through water. Here they discovered that narrow cones flip over while broad cones flutter. However, in between these two are "just right" cone shapes that fly straight. "These experiments tell an origin story for oriented meteorites: the very aerodynamic forces that melt and reshape meteoroids in flight also stabilize its posture so that a cone shape can be carved and ultimately arrive on Earth," observes Ristroph. "This is another interesting message we're learning from meteorites, which are scientifically important as 'alien visitors' to Earth whose composition and structure tell us about the universe."
Scientists find largest meteorite impact in the British Isles Washington (UPI) Jun 10, 2019 Researchers have located the epicenter of an ancient meteorite impact along the Scottish coast, the largest impact in the British Isles. Scientists first identified evidence of the impact in 2008, but they were unable to pin down the exact location of the crater. Over the last decade, researchers conducted field studies and analyzed rock samples in the lab. Their findings allowed them to identify the meteorite's exact point of impact. The ancient crater is positioned roughly 10 miles inl ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |