. 24/7 Space News .
ICE WORLD
Warm winds in autumn could strain Antarctica's Larsen C ice shelf
by Staff Writers
College Park MD (SPX) Apr 17, 2019

File image of iceberg breaking off from the ice shelf.

The Antarctic Peninsula is the northernmost part of Earth's coldest continent, making it particularly vulnerable to a changing global climate. Surface melting of snow and ice initiated the breakup of the peninsula's northernmost Larsen A ice shelf in 1995, followed in 2002 by the Larsen B ice shelf to the south, which lost a section roughly the size of Rhode Island.

New University of Maryland-led research shows that the Larsen C ice shelf - the fourth largest ice shelf in Antarctica, located just south of the former Larsen B shelf - experienced an unusual spike in late summer and early autumn surface melting in the years 2015 to 2017. The study, spanning 35 years from 1982 to 2017, quantifies how much of this additional melting can be ascribed to warm, dry air currents called foehn winds that originate high in the peninsula's central mountain range.

The study further shows that the three-year spike in foehn-induced melting late in the melt season has begun to restructure the snowpack on the Larsen C ice shelf. If this pattern continues, it could significantly alter the density and stability of the Larsen C ice shelf, potentially putting it at further risk to suffer the same fate as the Larsen A and B shelves.

The researchers used two different methods to quantify patterns of foehn-induced melt from climate model outputs that correspond to real-world satellite observations and weather station data. They published their findings on April 11, 2019 in the journal Geophysical Research Letters.

"Three years doesn't make a trend. But it's definitely unusual that we are seeing enhanced foehn winds and associated melting in late summer and early autumn," said Rajashree Tri Datta, a faculty assistant at UMD's Earth System Science Interdisciplinary Center and the lead author of the research paper.

"It's unusual that we're seeing increased foehn-induced melt in consecutive years - especially so late in the melt season, when the winds are stronger but the temperatures are usually cooling down. This is when we expect melting to end and the surface to be replenished with snow."

Enhanced surface melting causes water to trickle into the underlying layers of firn - or uncompacted, porous snow - in the upper layers of the ice sheet. This water then refreezes, causing the normally porous, dry firn layers to become denser. Eventually, the firn layers can become too dense for water to enter, leading to a buildup of liquid water atop the ice shelf.

"With enhanced densification, the ice enters the next warm season with a very different structure. Our modeling results show that, with less open space for the surface water to filter into, runoff increases year after year," said Datta, who also has an appointment at NASA's Goddard Space Flight Center.

"The dominant theory suggests that enhanced densification led to the fracture of the Larsen A and B shelves. Despite an overall decrease in peak summer melt over the last few years, episodic melting late in the melt season could have an outsized impact on the density of the Larsen C ice shelf."

As foehn winds race down the colder eastern slopes of the Antarctic Peninsula's central mountain range, they can raise air temperatures by as much as 30 degrees Fahrenheit, producing localized bursts of snowmelt. According to Datta, these winds exert their greatest effects at the bases of glacial valleys. Here, where the feet of the glaciers adjoin the Larsen C ice shelf, foehn winds stand to destabilize some of the most fragile and critical structures in the system.

"The Larsen C ice shelf is of particular interest because it's among the most vulnerable in Antarctica," Datta explained.

"Because it's a floating ice shelf, a breakup of Larsen C wouldn't directly lead to a rise in global mean sea level. However, the ice shelf does brace against the flow of the glaciers that feed it. So if Larsen C goes, some of these glaciers will be free to accelerate their rate of flow and melt, which will result in a rise in global sea level."

Research Report: "The Effect of Foehn-Induced Surface Melt on Firn Evolution over the Northeast Antarctic Peninsula"


Related Links
University of Maryland
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Sentinels monitor converging ice cracks
Paris (ESA) Mar 15, 2019
The Copernicus Sentinel-1 radar mission shows how cracks cutting across Antarctica's Brunt ice shelf are on course to truncate the shelf and release an iceberg about the size of Greater London - it's just a matter of time. The Brunt ice shelf is an area of floating ice bordering the Coats Land coast in the Weddell Sea sector of Antarctica. Using radar images from the Copernicus Sentinel-1 mission the animation shows two lengthening fractures: a large chasm running northwards and a split, dub ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
No nausea for Beth Moses, Virgin's space tourist trainer

UAE mulls buying Soyuz spacecraft to send astronauts to ISS: Roscosmos

Spinoff Book Highlights NASA Technology Everywhere

Three prototypes in space settlement challenge receive UAE support

ICE WORLD
Arianespace completes deployment of O3b constellation

Composite Overwrap 3D-Printed Rocket Thruster Endures Extreme Heat

SpaceX carries out first commercial launch of Falcon Heavy

SpaceX scrubs 1st commercial Falcon Heavy launch due to strong wind

ICE WORLD
ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

Tests for the InSight 'Mole'

ICE WORLD
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

ICE WORLD
Spacecraft Repo Operations

Forging the future

Preserving heritage data at ESA

Amazon working on internet-serving satellite network

ICE WORLD
Study shows potential for Earth-friendly plastic replacement

Scientists print world's first 3D heart using patient's own cells

It's a one-way street for sound waves in this new technology

Spin lasers facilitate rapid data transfer

ICE WORLD
Necrophagy: A means of survival in the Dead Sea

Life Could Be Evolving Right Now on Nearest Exoplanets

NASA researchers catalogue all microbes and fungi on ISS

Biologists find world's first organism with non-photosynthesizing chlorophyll

ICE WORLD
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.