Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Vibrant Mix of Marine Life Found at Extreme Ocean Depths
by Staff Writers
San Diego CA (SPX) Feb 26, 2013


The footage was taken from five cameras equipped on the DEEPSEA CHALLENGER submersible that Cameron piloted to the Challenger Deep. Additional footage came from specialized "lander" deep ocean vehicles developed in collaboration with Scripps engineer Kevin Hardy that captured samples at various depths.

The first scientific examinations of data recorded during a record-setting expedition have yielded new insights about the diversity of creatures that live and thrive in the cold, dark, and highly pressurized habitats of the world's deepest points and their vastly unexplored ecosystems.

Natalya Gallo of Scripps Institution of Oceanography at UC San Diego will present preliminary findings from the DEEPSEA CHALLENGE expedition, a project led by James Cameron in collaboration with Scripps, and supported by National Geographic and Rolex, on Feb. 22 (GS09: Community Ecology Session, 8:45 a.m. PST) at the 2013 Aquatic Sciences Meeting of the Association for the Sciences of Limnology and Oceanography in New Orleans.

Gallo, a graduate student with biological oceanographer Lisa Levin's group, analyzed 25 hours of video captured during Cameron's historic March 26, 2012, solo dive 11 kilometers (6.8 miles) below the ocean surface to the Challenger Deep in the Pacific Ocean's Mariana Trench, as well as separate dives (also during the DEEPSEA CHALLENGE expedition) to the New Britain Trench and Ulithi, also in the Pacific Ocean.

The footage was taken from five cameras equipped on the DEEPSEA CHALLENGER submersible that Cameron piloted to the Challenger Deep. Additional footage came from specialized "lander" deep ocean vehicles developed in collaboration with Scripps engineer Kevin Hardy that captured samples at various depths.

Early results of Gallo's analysis reveal a vibrant mix of organisms, different in each trench site. The Challenger Deep featured fields of giant single-cell amoebas called "xenophyophores," sea cucumbers, and enormous shrimp-like crustaceans called amphipods.

The New Britain Trench featured hundreds of stunning stalked anemones growing on pillow lavas at the bottom of the trench, as well as a shallower seafloor community dominated by spoon worms, burrowing animals that create a rosette around them by licking organic matter off the surrounding sediment with a tongue-like proboscis. In contrast, Ulithi's seafloor ecosystem in the Pacific atolls featured high sponge and coral biodiversity.

As the submersible and landers pushed into deeper waters, the variety of species declined, with each depth dominated by a handful of key organisms. At shallow depths in the New Britain Trench, Gallo observed strange rotund but graceful animals called sea cucumbers swimming in the water column.

Different species of sea cucumbers were present even in the great depths of the Challenger Deep but appear to have adapted to these depths by decreasing in size, not swimming, and feeding by orienting themselves with the currents.

The sea cucumbers seen in the Challenger Deep at approximately 11 kilometers (approximately 36,000 feet) likely represent a new species and are the first recorded abundant population of the animals found in the deepest part of the ocean.

Proximity to land also played a role in the makeup of the deep-sea environment. Deep in the New Britain Trench, located near Papua New Guinea, Gallo identified palm fronds, leaves, sticks, and coconuts-terrestrial materials known to influence seafloor ecosystems.

The Challenger Deep and Ulithi, both more removed from terrestrial influence, were absent of such evidence. Gallo also spotted a dive weight in the Challenger Deep footage, likely used as ballast on another deep-submergence vehicle.

"These data add valued information to our limited understanding of deep-sea and trench biology," said Gallo. "Only a small fraction of the deep seafloor has been fully explored, so this expedition allows us to better understand these unique deep-sea ecosystems."

Gallo and Ralph Pace, a master's student in the Center for Marine Biodiversity and Conservation at Scripps, are compiling an image reference collection of all organisms identified during these dives to help expand the scientific impact of the expedition.

"New knowledge about life in the deep sea becomes increasingly important as humans ramp up their exploitation of the fish, energy, mineral, and genetic resources of the deep sea," said Levin. "Natalya's observation of a dive weight from a past expedition in the Challenger Deep reminds us that our presence in the ocean is pervasive."

Gallo noted that her findings were largely consistent with discoveries made in the 1950s, '60s, and '70s, the first "golden age" of deep-sea exploration. New high-definition video capabilities used during Deepsea Challenge expand exploration potential by allowing scientists to view organisms in their natural habitat and observe how these unique biological communities function, she said.

"The DEEPSEA CHALLENGE expedition made possible the discovery of the deepest examples of gigantism known thus far," said Doug Bartlett, a Scripps marine microbiologist and chief scientist of the expedition.

"Among the many values of collecting deep-sea samples is the possible isolation of microbes adapted to the extreme conditions of life in the trenches. These microbes inform us of the evolution, diversity, and adaptations of life and perhaps even life's origins and its possible presence elsewhere in the solar system."

.


Related Links
Scripps Institution of Oceanography
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
New projections of 'uneven' global sea-level rise
London, UK (SPX) Feb 26, 2013
Sophisticated computer modelling has shown how sea-level rise over the coming century could affect some regions far more than others. The model shows that parts of the Pacific will see the highest rates of rise while some polar regions will actually experience falls in relative sea levels due to the ways sea, land and ice interact globally. Reporting in the journal Geophysical Research Let ... read more


WATER WORLD
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

WATER WORLD
Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Big Nickel Rock Target Ahead

NASA Rover Confirms First Drilled Mars Rock Sample

WATER WORLD
Choreographed to Perfection

ATK Launch Abort Motor For First Orion Test Vehicle

Supersonic skydiver's records confirmed

Kennedy Engineers Designing Plant Habitat For ISS

WATER WORLD
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

WATER WORLD
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

WATER WORLD
SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

India's 102nd space mission lifts off successfully

Countdown begins for Indo-French satellite launch

WATER WORLD
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

WATER WORLD
Tokyo hotel shrinks in new-style urban demolition

Fluids in Space, Shaken Not Stirred

The world's most sensitive plasmon resonance sensor inspired by ancient Roman cup

Sustainable new catalysts fueled by a single proton




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement