|
. | . |
|
by Nola Taylor Redd for Astrobiology Magazine Moffet Field CA (NASA) Apr 23, 2015
Long before the hunt began to find Earth lookalikes around other stars, one planet in the Solar System had already been named Earth's twin. With its similar size and mass, Venus measures very close to Earth, with one major yet significant difference. Its thick atmosphere makes temperatures on the planet hot enough to melt lead, and therefore most certainly too hot to sustain life. In order to weed out Venus-like planets from those that would be more habitable, several scientists, including planetary scientist Stephen Kane of San Francisco State University, proposed the establishment of a "Venus zone" around stars, a region where the atmosphere could be consumed by a runaway greenhouse effect that superheats its planets. "We're specifically trying to make it clear that size is no indication of habitability," Kane told Astrobiology Magazine. In other words, just because a planet is roughly the size of Earth, instead of, say, Jupiter, doesn't guarantee the conditions are right for life to evolve.
Defining the Venus Zone "The primary purpose of the habitable zone is target selection," said Kane. Kane serves as the chair of NASA's Kepler Telescope's Habitable Zone working group, which seeks to utilize all available data from NASA's Kepler mission, along with any follow-up observations, to provide the most robust list of habitable zone planets discovered by the telescope. The aim is to better understand how common Earth-sized planets are in the habitable zones of other stars. To date, the telescope has identified more than 4,100 planetary candidates. The Venus zone would similarly serve as a target selection tool. Scientists hoping to find the next Earth-like planet perform follow-up searches on planetary candidates in the habitable zone; the establishment of a Venus zone would narrow down the inner edge of potential habitability. A planet within the Venus zone may form an ocean at some point in its history. Like Earth, Venus was thought to contain water on its surface until approximately one billion years ago, at which point it lost its liquid. Kane and his team labeled the point at which a planet would lose its oceans due to energy from its star as the outer edge of the Venus zone, and the inner boundary of the habitable zone. Losing liquid water would inhibit the carbon cycle of a planet, allowing more to build up in the atmosphere. Rising carbon levels would kick off a runaway greenhouse effect that would heat the planet. The runaway greenhouse effect for a planet can be avoided if it experiences significant atmospheric loss. As the atmosphere escapes into space, it prevents the carbon from building up and superheating the planet. This loss of atmosphere establishes the inner edge of the Venus zone. Kane presented his research at the January meeting of the American Astronomical Society in Seattle, Washington. The work was also published in the scientific journal, Astrophysical Journal Letters.
Finding Exo-Venus "At the moment, we lack enough planets around bright stars, and we lack the resources," Kane said. "Resources means James Webb." Set to launch in 2018, the James Webb Space Telescope will be able to search for and study planets around distant stars. At the same time, the Transiting Exoplanet Survey Satellite, or TESS, will map exoplanets around the brightest stars in the sky after its 2017 launch. "James Webb combined with TESS will really change the game," Kane said. Because TESS searches for transiting planets - planets that are observed as they cross between Earth and their star - it will be more sensitive to those that orbit closer to their sun. "TESS will see a lot more exo-Venuses than it will exo-Earths," planetary atmospheric scientist James Kasting, of Penn State University, told Astrobiology Magazine in an email. "These are the planets to rule out in the search of the more interesting exo-Earths." At the same time, studying more exo-Venuses will help to narrow down the line between the Venus zone and the habitable zone, helping scientists to pinpoint which Earth-size planets are Earth-twins, and which bear a stronger resemblance to Venus. "Once we can observe these exo-Venuses and exo-Earths, we'll be able to determine more accurately the boundary between them," Kasting said. "Right now, that boundary is based entirely on theoretical climate models, which may not be very accurate under these distinctly non-Earth-like conditions." Until then, scientists may have to deal with Venus-twins posing as Earth-analogues in the samples obtained by Kepler. Kane and his team identified 43 potential Venus analogs, and think that even more exist. "I suspect a lot of Venus contamination in our sample," Kane said.
Related Links Astrobiology Magazine Life Beyond Earth Lands Beyond Beyond - extra solar planets - news and science
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |