. 24/7 Space News .
Using RNA Interference To Tune Gene Activity In Stem Cells

cellular interference with RNA

Cold Spring Harbor - Feb 06, 2003
The application of RNA interference (RNAi) to the study of mammalian biology and disease has the potential to revolutionize biomedical research and speed the development of novel therapeutic strategies.

A series of studies by Greg Hannon at Cold Spring Harbor Laboratory (CSHL) have revealed a great deal of information about the mechanism of RNAi, as well as how RNAi can be adapted for use in medical research. These and other studies led Science to name discoveries concerning RNAi the "Breakthrough of the Year" for 2002 among all of the sciences.

Now, researchers at CSHL have shown that RNAi can be used to set the level of gene activity in stem cells on "low," "medium," or "high."

The new study indicates that stable suppression of deleterious genes by RNAi--in which adult stem cells are isolated, modified ex vivo, and then re-introduced into the affected individual--might be an effective strategy for treating human disease.

The study, published in the February issue of Nature Genetics, focussed on the role of a tumor suppressor gene called p53 in a mouse model of lymphoma.

In the mouse model, forced expression of the Myc oncogene in B-cells causes the mice to develop B-cell lymphomas by 4 to 6 months of age. The scientists, led by Greg Hannon and his CSHL colleague, Scott Lowe, knew that completely deleting the p53 gene causes lymphomas to develop much sooner, and in a more aggressive, highly-invasive form, than lymphomas that develop when the p53 gene is present.

To test the effect of decreasing p53 to particular levels via RNA interference, the scientists reconstituted the blood cells of mice by first irradiating the animals to destroy their endogenous, bone marrow supply of hematopoietic stem cells, and then injected the mice with a fresh supply of hematopoietic stem cells that had been engineered through RNAi to produce low, medium, or high levels of p53.

The study showed that establishing different levels of p53 in B-cells by RNAi produces distinct forms of lymphoma. Similar to lymphomas that form in the absence of p53, lymphomas that formed in mice with low p53 levels developed rapidly (reaching terminal stage after 66 days, on average), infiltrated lung, liver, and spleen tissues, and showed little apoptosis or "programmed cell death."

In contrast, lymphomas that formed in mice with intermediate p53 levels developed less rapidly (reaching terminal stage after 95 days, on average), did not infiltrate lung, liver, or spleen tissues, and showed high levels of apoptosis. In mice with high B-cell p53 levels, lymphomas did not develop at an accelerated rate, and these mice did not experience decreased survival rates compared to control mice.

The study illustrates the ease with which RNAi "gene knockdowns" can be used to create a full range of mild to severe phenotypes (something that geneticists dream about), as well as the potential of RNAi in developing stem cell-based and other therapeutic strategies.

Along with a recent study by Hannon and his colleagues that demonstrated germline transmission of RNAi, the current study establishes RNAi as a convenient alternative to traditional, laborious, and less flexible homologous recombination-based gene knockout strategies for studying the effects of reduced gene expression in a wide variety of settings.

Related Links
Cold Spring Harbor Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


A Canadian Research Mission on Bone Loss in Space
St Hubert - Jan 20, 2003
During space missions astronauts undergo many physiological changes as a result of prolonged exposure to microgravity. Their muscles and bones deteriorate up to 10 times faster than the rate seen in patients suffering from muscular dystrophy and osteoporosis. In fact, while in space, astronauts can lose up to 2% of their bone mass each month. The molecular mechanism for this loss is not known and effective countermeasures have not yet been determined.







  • Artemis Finally Reaches Operational Orbit
  • Lord Sainsbury Launches Three-Year Strategy For UK Space
  • Artemis Nearly There
  • Rosetta: A Comet Ride To Solve Planetary Mysteries

  • Using an Earth Wind Tunnel to Test a Parachute Bound for Mars
  • Mars May Be Much Older Or Younger Than Thought
  • Mars and the Final Four
  • Hunt For Life On Mars Dealt Another Blow

  • Vandenberg Launch Facility Gets Facelift
  • Flight 159: The Last Ariane 4
  • ILS Investigation Panel Releases Results of Initial Review
  • Orbital Set To Launch Nasa Satellite Aboard Pegasus Space Launch Vehicle

  • Norway Buys $15 Million Worth of RADARSAT-2 Data from MDA
  • Space Imaging Offers Online Shopping Cart At Last
  • Analog Detection Of Concealed Weapons of Mass Destruction
  • Is Remote Sensing The Answer To Today's Agriculture Problems

  • New Moons Found Around Neptune
  • Novel Way To Look For Comets Beyond Neptune
  • First Neptune Trojan Discovered
  • Student Science Instrument Selected for Ride to Pluto

  • Scientists Catch Their First Elusive "Dark" Gamma-Ray Burst
  • Biggest Zoom Lens In Space Extends Hubble's Reach
  • The Strange And Mysterious Star V838 Mon
  • Gravity-Wave Search Produces Initial Data

  • Moon's Early History May Have Been Interrupted By Big Burp
  • Memories Of Orange Rock From The Lunar Age
  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material

  • Boeing Delta II Lifts Air Force Satellites into Action
  • Delta 2 Ready to Launch Pair of GPS Birds
  • Crop Producers Go High-Tech With GPS Technology
  • Mobilus Finds Your Stolen Car Within 20 Minutes

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement