. 24/7 Space News .
CHIP TECH
Ushering in ultrafast cluster electronics
by Staff Writers
Sapporo, Japan (SPX) Apr 09, 2019

When light is applied to the T-shaped benzene cluster in their computer simulation, they reorganized themselves into a single stack, changing its electrical conductivity. The addition of a molecule of water made the stacking occur significantly faster. Tachikawa H., et al. Scientific Reports, Feb. 20, 2019

A new computational method can help fast track the development of tiny, ultrafast electronic devices made from small clusters of molecules.

Hokkaido University researchers have developed a computational method that can predict how clusters of molecules behave and interact over time, providing critical insight for future electronics. Their findings, published in the journal Scientific Reports, could lead to the creation of a new field of science called cluster molecular electronics.

Single molecule electronics is a relatively new, rapidly progressing branch of nanotechnology using individual molecules as electronic components in devices. Now, Hiroto Tachikawa and colleagues at Hokkaido University in Japan have developed a computational approach that can predict how clusters of molecules behave over time, which could help launch a new field of study for cluster molecule electronics. Their approach combines two methods traditionally used for quantum chemical and molecular dynamic calculations.

They used their method to predict the changes in a computer-simulated cluster of benzene molecules over time. When light is applied to the T-shaped benzene clusters, they reorganize themselves into a single stack; an interaction known as pi-stacking. This modification from one shape to another changes the cluster's electrical conductivity, making it act like an on-off switch.

The team then simulated the addition of a molecule of water to the cluster and found that pi-stacking happened significantly faster. This pi-stacking is also reversible, which would allow switching back and forth between the on and off modes.

In contrast, previous studies had shown that the addition of a molecule of water to a single molecule electronic device impedes its performance.

"Our findings could usher in a new field of study that investigates the electronic performance of different numbers, types and combinations of molecular clusters, potentially leading to the development of cluster molecule electronic devices," Tachikawa commented.

Research paper


Related Links
Hokkaido University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Copper-based alternative for next-generation electronics
Sendai, Japan (SPX) Apr 03, 2019
Japanese scientists have developed a technique to transform a copper-based substance into a material that mimics properties of precious and pricey metals, such as gold and silver. The new medium, made of copper nanoparticles (very small copper-based structures) has promising applications in the production of electronic devices that would otherwise depend on expensive gold and silver counterparts. It is also suitable in the fabrication of electronic components using printing technologies that are r ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Bacterial factories could make high-performance proteins for space missions

More Delays Ahead for Boeing's New Space Capsule for Astronauts

Russia launches cargo ship with food, supplies for ISS

Boeing delays capsule's first space test flight

CHIP TECH
US Planning Five Hypersonic Test Programs in Marshall Islands

First 2019 Proton-M Rocket Launch From Baikonur Slated for May

China completes compatibility test on core parts of rocket engine

India launches PSLV-C45, with spysat and 28 microsats onboard

CHIP TECH
NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

Curiosity Captured Two Solar Eclipses on Mars

Mysterious Martian Methane Bursts Confirmed

CHIP TECH
China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

CHIP TECH
ESA and DLR in joint study to support deep space missions

Where space missions are born

Inmarsat agrees to $3.4 bn takeover from consortium

OneWeb starts to mass-produce satellites in Florida

CHIP TECH
NASA awards contract to Auburn University's National Center for Additive Manufacturing Excellence

High-tech material in a salt crust

China's virtual reality arcades aim for real-world success

US Air Force and Raytheon collaborate to modernize space command and control system

CHIP TECH
Surviving A Hostile Planet

Exoplanet Under the Looking Glass

High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data

Astronomers Discover Two New Planets Using Artificial Intelligence

CHIP TECH
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.