Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Uranium isotopes carry the fingerprint of ancient bacterial activity
by Staff Writers
Lausanne, France (SPX) Apr 22, 2015


Uranium is far from being the only metal to which bacteria donate extra electrons. But once it precipitates in its insoluble form, uranium is the only metal known to date that preserves a signal that scientists can analyze to detect whether bacteria were involved in its transformation.

The oceans and other water bodies contain billions of tons of dissolved uranium. Over the planet's history, some of this uranium was transformed into an insoluble form, causing it to precipitate and accumulate in sediments. There are two ways that uranium can go from a soluble to an insoluble form: either through the action of live organisms - bacteria - or by interacting chemically with certain minerals.

Knowing which pathway was taken can provide valuable insight into the evolution and activity of microbial biology over Earth's history. Publishing in the journal PNAS, an international team of researchers led by the Ecole Polytechnique Federale de Lausanne in Switzerland describes a new method that uses the isotopic composition of uranium to distinguish between these alternative pathways.

The link between bacteria and the rock record is not new. Under certain conditions, bacteria interact biochemically with dissolved ions such as sulfur, or uranium, causing them to become insoluble and precipitate, contributing to their accumulation in oceanic sediments. But for the first time, scientists can determine whether bacteria were active at the time and place the sediments were formed by analyzing tiny amounts of uranium present in sediments.

Picky electron donors
The fact that bacteria and uranium interact at all may sound somewhat surprising. But as Rizlan Bernier-Latmani, the study's principal investigator explains, to complete certain metabolic processes, the bacteria need to get rid of electrons, and dissolved uranium just happens to be capable of taking them up.

Uranium is far from being the only metal to which bacteria donate extra electrons. But once it precipitates in its insoluble form, uranium is the only metal known to date that preserves a signal that scientists can analyze to detect whether bacteria were involved in its transformation.

What makes uranium unique is that bacteria are picky when it comes to the atomic weight of the uranium to which they donate electrons. Of the two most abundant uranium isotopes found on earth - uranium-238 and uranium-235 - bacteria seem to prefer the heavier uranium-238.

The chemical transformation pathway, by contrast, treats both forms of uranium equally. As a result, a slightly higher ratio between heavy and light isotopes in solid uranium extracted from the ground points at a bacterial transformation process.

The evolution of life
Being able to discriminate between both pathways gives researchers a unique tool to probe into environmental niches occupied by bacteria billions of years ago. Applying their methodology to existing data of Archean sediments from Western Australia, the authors argue that uranium found in oxygen-depleted sediments there was immobilized biologically. Bacteria, they argue, were active there already 2.5 billion years ago when the sediments were formed.

To an environmental biogeochemist like Bernier-Latmani, knowing whether or not bacteria were active at that time and place is exciting, as it could provide new insight into the planet's chemical evolution, for example on the abundance free oxygen in the oceans and the atmosphere.

"We have some understanding of how oxygen concentrations in the atmosphere and oceans evolved over time. There is increasing evidence that traces of oxygen were available already billions of years ago in an overall anoxic world - and bacteria existed that indirectly used it. These changes have a direct bearing on the evolution of life and on mass extinctions," she says. In the complex puzzle of the planet's early history, uranium could be holding some of the missing pieces.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Capitanian extinction added to list of major extinctions
Boulder CO (SPX) Apr 16, 2015
Since the Cambrian Explosion, ecosystems have suffered repeated mass extinctions, with the "Big 5" crises being the most prominent. Twenty years ago, a sixth major extinction was recognized in the Middle Permian (262 million years ago) of China, when paleontologists teased apart losses from the "Great Dying" at the end of the period. Until now, this Capitanian extinction was known on ... read more


EARLY EARTH
Manned Moon Flight Planned For 2030

A new view of the moon's formation

Moon formed when young Earth and little sister collided

Will the moon's first inhabitants live in giant lava tubes?

EARLY EARTH
Mars rover data boosts hope for liquid water on Mars

Examining Rock Outcrop at 'The Spirit of St. Louis' Crater

Mars has belts of glaciers consisting of frozen water

Mars' dust-covered glacial belts may contain tons of water

EARLY EARTH
Ramping Up For Johnson's Chamber A Test

NASA Offers Study Volunteers Big Bucks to Stay in Bed

A Lot Can Happen in 5 Years: the President's 2010 Exploration Goals

May I go to space once more asks Brian Duffy

EARLY EARTH
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

EARLY EARTH
Research for One-Year Space Station Mission Launched On Falcon 9

Astronaut Hadfield to release first space album

Special 3-D delivery from space to Marshall Space Flight Center

NASA Extends Lockheed Martin Contract To Prepare Critical Cargo For ISS

EARLY EARTH
Russia Should Consider Launching Super-Heavy Rockets From Vostochny

Rocket tips over after SpaceX recycle attempt

SpaceX bid to recycle rocket fails again

RockSat-X Rescheduled for April 18

EARLY EARTH
Hot and Stormy at High Altitudes on Exoplanet HD 189733b

Small solar eruptions can have profound effects on unprotected planets

The Solar System and Beyond is Awash in Water

Earthlike 'Star Wars' Tatooines may be common

EARLY EARTH
IBM earnings dip as sales fall again

Scientists examine rarest elements of periodic table

New order for Selex ES search-and-rescue radars

Scientists create invisible objects without metamaterial cloaking




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.