![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Bristol UK (SPX) Nov 22, 2017
A new study led by a University of Bristol earth scientist has shown that recently reported unexpected behaviour on Titan, the largest moon of Saturn, is due to its unique atmospheric chemistry. Titan's polar atmosphere recently experiences and unexpected and significant cooling, contrary to all model predictions and differing from the behaviour of all other terrestrial planets in our solar system. Titan is the largest moon of Saturn, is bigger than the planet Mercury, and is the only moon in our solar system to have a substantial atmosphere. Usually, the high altitude polar atmosphere in a planet's winter hemisphere is warm because of sinking air being compressed and heated - similar to what happens in a bicycle pump. Puzzlingly, Titan's atmospheric polar vortex seems to be extremely cold instead. Before its fiery demise in Saturn's atmosphere on September 15, the Cassini spacecraft obtained a long series of observations of Titan's polar atmosphere covering nearly half of Titan's 29.5 earth-year long year using the Composite Infrared Spectrometer (CIRS) instrument. The Cassini/CIRS observations showed that while the excepted polar hot spot did begin to develop at the start of winter in 2009, this soon developed into a cold spot in 2012, with temperatures as low as 120 K being observed until late 2015. Only in the most recent 2016 and 2017 observations has the expected hot-spot returned. Lead author Dr Nick Teanby from the University of Bristol's School of Earth Sciences, said: "For the Earth, Venus, and Mars, the main atmospheric cooling mechanism is infrared radiation emitted by the trace gas CO2 and because CO2 has a long atmospheric lifetime it is well mixed at all atmospheric levels and is hardly affected by atmospheric circulation. "However, on Titan, exotic photochemical reactions in the atmosphere produce hydrocarbons such as ethane and acetylene, and nitriles including hydrogen cyanide and cyanoacetylene, which provide the bulk of the cooling." These gases are produced high in the atmosphere, so have a steep vertical gradient, meaning that their abundances can be significantly modified by even modest vertical atmospheric circulations. Therefore, winter polar subsidence led to massive enrichments of these radiatively active gases over the southern winter pole. Researchers used the temperature and gas abundances measured with Cassini, coupled with a numerical radiative balance model of heating and cool rates, to show that trace gas enrichment was large enough to cause significant cooling and extremely cold atmospheric temperatures. This explains earlier observations of strange hydrogen cyanide ice clouds that were observed over the pole in 2014 with Cassini's cameras. Dr Teanby added: "This effect is so far unique in the solar system and is only possible because of Titan's exotic atmospheric chemistry. "A similar effect could also be occurring in many exoplanet atmospheres having implications for cloud formation and atmospheric dynamics."
![]() Washington (UPI) Nov 21, 2017 New analysis suggests unique atmospheric chemistry explains why the polar vortex on Saturn's moon Titan isn't behaving as expected. Titan is Saturn's largest moon, and is the only moon in the solar system with a sizable atmosphere. Recent observations suggest that atmosphere hasn't been behaving as predicted by models. During the winter, air in the upper atmosphere tends to warm ... read more Related Links University of Bristol Explore The Ring World of Saturn and her moons Jupiter and its Moons The million outer planets of a star called Sol News Flash at Mercury
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |