Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
Understanding the historical probability of drought
by Staff Writers
Washington DC (SPX) Feb 06, 2013


Soil water deficit is defined in the study as the difference between the capacity of the soil to hold water and the actual water content calculated from long-term soil moisture measurements.

Droughts can severely limit crop growth, causing yearly losses of around $8 billion in the United States. But it may be possible to minimize those losses if farmers can synchronize the growth of crops with periods of time when drought is less likely to occur. Researchers from Oklahoma State University are working to create a reliable "calendar" of seasonal drought patterns that could help farmers optimize crop production by avoiding days prone to drought.

Historical probabilities of drought, which can point to days on which crop water stress is likely, are often calculated using atmospheric data such as rainfall and temperatures. However, those measurements do not consider the soil properties of individual fields or sites.

"Atmospheric variables do not take into account soil moisture," explains Tyson Ochsner, lead author of the study. "And soil moisture can provide an important buffer against short-term precipitation deficits."

In an attempt to more accurately assess drought probabilities, Ochsner and co-authors, Guilherme Torres and Romulo Lollato, used 15 years of soil moisture measurements from eight locations across Oklahoma to calculate soil water deficits and determine the days on which dry conditions would be likely. Results of the study, which began as a student-led class research project, were published in Agronomy Journal.

The researchers found that soil water deficits more successfully identified periods during which plants were likely to be water stressed than did traditional atmospheric measurements when used as proposed by previous research.

Soil water deficit is defined in the study as the difference between the capacity of the soil to hold water and the actual water content calculated from long-term soil moisture measurements.

Researchers then compared that soil water deficit to a threshold at which plants would experience water stress and, therefore, drought conditions. The threshold was determined for each study site since available water, a factor used to calculate threshold, is affected by specific soil characteristics.

"The soil water contents differ across sites and depths depending on the sand, silt, and clay contents," says Ochsner. "Readily available water is a site- and depth-specific parameter."

Upon calculating soil water deficits and stress thresholds for the study sites, the research team compared their assessment of drought probability to assessments made using atmospheric data.

They found that a previously developed method using atmospheric data often underestimated drought conditions, while soil water deficits measurements more accurately and consistently assessed drought probabilities. Therefore, the researchers suggest that soil water data be used whenever it is available to create a picture of the days on which drought conditions are likely.

If soil measurements are not available, however, the researchers recommend that the calculations used for atmospheric assessments be reconfigured to be more accurate. The authors made two such changes in their study.

First, they decreased the threshold at which plants were deemed stressed, thus allowing a smaller deficit to be considered a drought condition. They also increased the number of days over which atmospheric deficits were summed. Those two changes provided estimates that better agreed with soil water deficit probabilities.

Further research is needed, says Ochsner, to optimize atmospheric calculations and provide accurate estimations for those without soil water data. "We are in a time of rapid increase in the availability of soil moisture data, but many users will still have to rely on the atmospheric water deficit method for locations where soil moisture data are insufficient."

Regardless of the method used, Ochsner and his team hope that their research will help farmers better plan the cultivation of their crops and avoid costly losses to drought conditions.

View the abstract here

.


Related Links
American Society of Agronomy
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Study Provides New Insights on Drought Predictions in East Africa
Cape Cod MA (SPX) Jan 21, 2013
With more than 40 million people living under exceptional drought conditions in East Africa, the ability to make accurate predictions of drought has never been more important. In the aftermath of widespread famine and a humanitarian crisis caused by the 2010-2011 drought in the Horn of Africa-possibly the worst drought in 60 years- researchers are striving to determine whether drying trends will ... read more


CLIMATE SCIENCE
Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

CLIMATE SCIENCE
Mapping Mars

Weekend Test on Mars Was Preparation to Drill a Rock

AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

CLIMATE SCIENCE
Supersonic skydiver even faster than thought

Ahmadinejad says ready to be Iran's first spaceman

Iran's Bio-Capsule Comes Back from Space

A Hero For Humankind: Yuri Gagarin's Spaceflight

CLIMATE SCIENCE
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

CLIMATE SCIENCE
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

CLIMATE SCIENCE
Final checkout underway for the Starsem Soyuz launch with Globalstar spacecraft

Zenit Engine Worked Normally

NASA Launches Rocket from Wallops Flight Facility in Virginia

Intelsat 27 Launch Unsuccessful

CLIMATE SCIENCE
Are Super-Earths Actually Mini-Neptunes?

Herschel Finds Past-Prime Star May Be Making Planets

Stars can be late parents

Researchers develop model for identifying habitable zones around star

CLIMATE SCIENCE
South Korean Satellite Makes First Contact with Ground

Novel materials shake ship scum

Penn Research Shows Mechanism Behind Wear at the Atomic Scale

NTU research embraces laser and sparks cool affair




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement