Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Understanding Interface Properties of Graphene Paves Way for New Applications
by Staff Writers
Raleigh NC (SPX) Aug 09, 2013


File image.

Researchers from North Carolina State University and the University of Texas have revealed more about graphene's mechanical properties and demonstrated a technique to improve the stretchability of graphene - developments that should help engineers and designers come up with new technologies that make use of the material.

Graphene is a promising material that is used in technologies such as transparent, flexible electrodes and nanocomposites. And while engineers think graphene holds promise for additional applications, they must first have a better understanding of its mechanical properties, including how it works with other materials.

"This research tells us how strong the interface is between graphene and a stretchable substrate," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work.

"Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by 'buckling' the graphene."

The researchers looked at how a graphene monolayer - a layer of graphene only one atom thick - interfaces with an elastic substrate. Specifically, they wanted to know how strong the bond is between the two materials because that tells engineers how much strain can be transferred from the substrate to the graphene, which determines how far the graphene can be stretched.

The researchers applied a monolayer of graphene to a polymer substrate, and then stretched the substrate. They used a spectroscopy technique to monitor the strain at various points in the graphene. Strain is a measure of how far a material has stretched.

Initially, the graphene stretched with substrate. However, while the substrate continued to stretch, the graphene eventually began to stretch more slowly and slide on the surface instead. Typically, the edges of the monolayer began to slide first, with the center of the monolayer stretching further than the edges.

"This tells us a lot about the interface properties of the graphene and substrate," Zhu says. "For the substrate used in this study, polyethylene terephthalate, the edges of the graphene monolayer began sliding after being stretched 0.3 percent of its initial length. But the center continued stretching until the monolayer had been stretched by 1.2 to 1.6 percent."

The researchers also found that the graphene monolayer buckled when the elastic substrate was returned to its original length. This created ridges in the graphene that made it more stretchable because the material could stretch out and back, like the bellows of an accordion. The technique for creating the buckled material is similar to one developed by Zhu's lab for creating elastic conductors out of carbon nanotubes.

The paper, "Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate," was published online Aug. 1 in Advanced Functional Materials. Lead author of the paper is Dr. Tao Jiang, a postdoctoral researcher at NC State. The paper was co-authored by Dr. Rui Huang of the University of Texas. The research was funded by the National Science Foundation (NSF) and the NSF's ASSIST Engineering Research Center at NC State.

.


Related Links
North Carolina State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Graphene 'onion rings' have delicious potential
Houston TX (SPX) Jul 19, 2013
Concentric hexagons of graphene grown in a furnace at Rice University represent the first time anyone has synthesized graphene nanoribbons on metal from the bottom up - atom by atom. As seen under a microscope, the layers brought onions to mind, said Rice chemist James Tour, until a colleague suggested flat graphene could never be like an onion. "So I said, 'OK, these are onion rings,'" To ... read more


CARBON WORLDS
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

CARBON WORLDS
Opportunity Reaches Base of 'Solander Point'

NASA launches new Russian-language Mars website

Big ice may explain Mars' double-layer craters

Full Curiosity Traverse Passes One-Mile Mark

CARBON WORLDS
Space to become tourist destination in the future

HI-SEAS Mission Now in its Final Days

College of Law launches doctorate in space law

Study: Teleportation would have a slight time-to-transmit problem

CARBON WORLDS
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

CARBON WORLDS
Japanese Cargo Craft Captured, Berthed to ISS

Japanese Cargo Spacecraft Docks with ISS

NASA's Firestation on way to ISS

Weekly recap from the International Space Station expedition lead scientist

CARBON WORLDS
EUTELSAT spacecraft ready for integration to Ariane 5

Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

CARBON WORLDS
Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

New Explorer Mission Chooses the 'Just-Right' Orbit

'Blinking' stellar system may yield clues to planet formation

Pulsating star sheds light on exoplanet

CARBON WORLDS
New 'weird' material may be new class of solids, researchers say

Large Area Picosecond Photodetectors push timing envelope

Seeing depth through a single lens

Altering organic molecules' interaction with light




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement