. 24/7 Space News .
STELLAR CHEMISTRY
U-M astronomers confirm collision between two Milky Way satellite galaxies
by Staff Writers
Ann Arbor, MI (SPX) Oct 26, 2018

This image shows an overview of the full Small Magellanic Cloud and was composed from two images from the Digitized Sky Survey 2, which digitized photographic surveys of the night sky. Image credit: Davide De Martin (ESA/Hubble)

If you're standing in the Southern Hemisphere on a clear night, you can see two luminous clouds offset from the Milky Way.

These clouds of stars are satellite galaxies of the Milky Way, called the Small Magellanic Cloud and the Large Magellanic Cloud, or SMC and LMC.

Using the newly released data from a new, powerful space telescope, University of Michigan astronomers have discovered that the southeast region, or "Wing," of the Small Magellanic Cloud is moving away from the main body of that dwarf galaxy, providing the first unambiguous evidence that the Small and Large Magellanic Clouds recently collided.

"This is really one of our exciting results," said U-M professor of astronomy Sally Oey, lead author of the study. "You can actually see that the Wing is its own separate region that's moving away from the rest of the SMC."

Their results are published in The Astrophysical Journal Letters.

Together with an international team, Oey and undergraduate researcher Johnny Dorigo Jones were examining the SMC for "runaway" stars, or stars that have been ejected from clusters within the SMC. To observe this galaxy they were using a recent data release from Gaia, a new, orbiting telescope launched by the European Space Agency.

Gaia is designed to image stars again and again over a period of several years in order to plot their movement in real time. That way, scientists can measure how stars move across the sky.

"We've been looking at very massive, hot young stars-the hottest, most luminous stars, which are fairly rare," Oey said. "The beauty of the Small Magellanic Cloud and the Large Magellanic Cloud is that they're their own galaxies, so we're looking at all of the massive stars in a single galaxy."

Examining stars in a single galaxy helps the astronomers in two ways: First, it provides a statistically complete sample of stars in one parent galaxy. Second, this gives the astronomers a uniform distance to all the stars, which helps them measure their individual velocities.

"It's really interesting that Gaia obtained the proper motions of these stars. These motions contain everything we're looking at," Dorigo Jones said. "For example, if we observe someone walking in the cabin of an airplane in flight, the motion we see contains that of the plane, as well as the much slower motion of the person walking.

"So we removed the bulk motion of the entire SMC in order to learn more about the velocities of individual stars. We're interested in the velocity of individual stars because we're trying to understand the physical processes occurring within the cloud."

Oey and Dorigo Jones study runaway stars to determine how they have been ejected from these clusters. In one mechanism, called the binary supernova scenario, one star in a gravitationally bound, binary pair explodes as a supernova, ejecting the other star like a slingshot. This mechanism produces X-ray-emitting binary stars.

Another mechanism is that a gravitationally unstable cluster of stars eventually ejects one or two stars from the group. This is called the dynamical ejection scenario, which produces normal binary stars. The researchers found significant numbers of runaway stars among both X-ray binaries and normal binaries, indicating that both mechanisms are important in ejecting stars from clusters.

In looking at this data, the team also observed that all the stars within the Wing-that southeast part of the SMC-are moving in a similar direction and speed. This demonstrates the SMC and LMC likely had a collision a few hundred million years ago.

Study contributor Gurtina Besla, an astronomer at the University of Arizona, modeled the collision of the SMC and LMC. She and her team predicted a few years ago that a direct collision would cause the SMC Wing region to move toward the LMC, whereas if the two galaxies simply passed near each other, the Wing stars would be moving in a perpendicular direction. Instead, the Wing is moving away from the SMC, toward the LMC, said Oey, confirming that a direct collision occurred.

"We want as much information about these stars as possible to better constrain these ejection mechanisms," Dorigo Jones said.

"Everyone loves marveling at images of galaxies and nebulae that are incredibly far away. The SMC is so close to us, however, that we can see its beauty in the night sky with just our naked eye. This fact, along with the data from Gaia, allow us to analyze the complex motions of stars within the SMC and even determine factors of its evolution."


Related Links
University of Michigan
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New infrared telescope first to monitor entire northern sky
Canberra, Australia (SPX) Oct 18, 2018
A new infrared telescope designed and built by astronomers at The Australian National University (ANU) and the California Institute of Technology (Caltech) in the US will be the first of its kind to monitor the entire northern sky in search of new cosmic events. The agile robotic telescope, called Gattini-IR, will scan the northern sky once every night, from the Palomar Observatory in southern California, allowing astronomers to observe and study fast-changing transient and variable events with un ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Installing life support the hands-free way

Plant hormone makes space farming a possibility

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

STELLAR CHEMISTRY
US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

Russian investigators identify responsible for failed Soyuz launch

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

Probe commission rules out sabotage as possible cause of Soyuz failure

STELLAR CHEMISTRY
Minerals of the world, unite

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

Mars likely to have enough oxygen to support life: study

STELLAR CHEMISTRY
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

STELLAR CHEMISTRY
Space industry entropy

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

STELLAR CHEMISTRY
Noble metal-free catalyst system as active as platinum

Where deep learning meets metamaterials

Penetrating the soil's surface with radar

ASU team unravels key mysteries of spider silk

STELLAR CHEMISTRY
Plan developed to characterize and identify ocean worlds

Discovering a previously unknown role for a source of magnetic fields

Some planetary systems just aren't into heavy metal

Double dust ring test could spot migrating planets

STELLAR CHEMISTRY
Europa plume sites lack expected heat signatures

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.