|
. | . |
|
by Staff Writers Granada, Spain (SPX) Mar 05, 2015
Recent research conducted by scientists from the University of Granada can contribute to determine the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational effects, dark matter amounts to more than 80% of the universe. In an article published in the prestigious journal Physical Review Letters, Adrian Ayala and her PhD thesis supervisor, Inmaculada Dominguez, both members of the "FQM Stelar Evolution and Nucleosynthesis" research group, have set limits to the properties of one of the particles which aspire to be identified as dark matter: axions. Researchers in this project also included Maurizio Giannotti (Barry University, USA), Alessandro Mirizzi (Deutsches Elektronen-Synchrotron, DESY, Germany) and Oscar Straniero (National Astrophysics Institute, INAF-Astronomic Observatory in Teramo, Italy). This project is evidence of the increasing collaboration between particle physicists and astrophysicists, which has originated a relatively new type of science 'astroparticle physics' In this project, scientists have used stars as particle physics labs: thanks to the high temperature inside stars, photons can turn into axions that escape to the exterior, carrying energy with them. "This loss of energy can have consequences, whether they are observable or not, in some phases of stellar evolution", says Adrian Ayala. "In our research, we have conducted numerical simulations (by computer) of the evolution of a star, since its birth until it exhausts all the hydrogen first and then the helium in its interior, including the processes that produce axions" Results indicate that the emission of axions can significantly diminish the time for the central combustion of helium, the so called HB (Horizontal Branch) phase: the energy taken by axions is compensated with the energy provided by nuclear combustion, which leads to a much faster consumption of helium. "Using this influence over the timing that features in this sort of evolution we can determine the emission of axions, since a high emission rate means a quick HB phase, thus diminishing the possibility of watching stars in this phase", says Immaculada Dominguez.
Maximum axion emission rate The production of axions relies on the constant coupling of axion-photon which characterizes the interaction between axion and photons. "We have obtained a maximum limit for this constant which is more restrictive than those established so far, both theoretically and through experiments", these U. of Granada researchers point out. The authors of this research point out that the accuracy in the determination of the coupling constant through the method used "critically depends on the accuracy with which the initial helium content within the stars in the globular cluster can be estimated"
Related Links University of Granada Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |