Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
UGR scientists provide new data on the nature of dark matter
by Staff Writers
Granada, Spain (SPX) Mar 05, 2015


Globular clusters consist of ancient star populations, which contain stars in different phases of evolution. Image courtesy NASA.

Recent research conducted by scientists from the University of Granada can contribute to determine the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational effects, dark matter amounts to more than 80% of the universe.

In an article published in the prestigious journal Physical Review Letters, Adrian Ayala and her PhD thesis supervisor, Inmaculada Dominguez, both members of the "FQM Stelar Evolution and Nucleosynthesis" research group, have set limits to the properties of one of the particles which aspire to be identified as dark matter: axions.

Researchers in this project also included Maurizio Giannotti (Barry University, USA), Alessandro Mirizzi (Deutsches Elektronen-Synchrotron, DESY, Germany) and Oscar Straniero (National Astrophysics Institute, INAF-Astronomic Observatory in Teramo, Italy). This project is evidence of the increasing collaboration between particle physicists and astrophysicists, which has originated a relatively new type of science 'astroparticle physics'

In this project, scientists have used stars as particle physics labs: thanks to the high temperature inside stars, photons can turn into axions that escape to the exterior, carrying energy with them.

"This loss of energy can have consequences, whether they are observable or not, in some phases of stellar evolution", says Adrian Ayala. "In our research, we have conducted numerical simulations (by computer) of the evolution of a star, since its birth until it exhausts all the hydrogen first and then the helium in its interior, including the processes that produce axions"

Results indicate that the emission of axions can significantly diminish the time for the central combustion of helium, the so called HB (Horizontal Branch) phase: the energy taken by axions is compensated with the energy provided by nuclear combustion, which leads to a much faster consumption of helium.

"Using this influence over the timing that features in this sort of evolution we can determine the emission of axions, since a high emission rate means a quick HB phase, thus diminishing the possibility of watching stars in this phase", says Immaculada Dominguez.

Maximum axion emission rate
The high quality in the recent observation of globular clusters allows for the contrast between the results of the numerical observations conducted in this project with the actual data. "By comparing the amount of stars observed in HB phase with the amount of stars watched in a different phase not affected by axions (such as the so called RGB, Red Giant Branch, phase) we have made an estimation about the maximum axion emission rate.

The production of axions relies on the constant coupling of axion-photon which characterizes the interaction between axion and photons. "We have obtained a maximum limit for this constant which is more restrictive than those established so far, both theoretically and through experiments", these U. of Granada researchers point out.

The authors of this research point out that the accuracy in the determination of the coupling constant through the method used "critically depends on the accuracy with which the initial helium content within the stars in the globular cluster can be estimated"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Granada
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Does dark matter cause mass extinctions and geologic upheavals
New York NY (SPX) Feb 20, 2015
Research by New York University Biology Professor Michael Rampino concludes that Earth's infrequent but predictable path around and through our Galaxy's disc may have a direct and significant effect on geological and biological phenomena occurring on Earth. In a new paper in Monthly Notices of the Royal Astronomical Society, he concludes that movement through dark matter may perturb the or ... read more


STELLAR CHEMISTRY
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

STELLAR CHEMISTRY
Curiosity confirms methane in Mars' atmosphere

New Flight Software to Fix Memory Issues is Onboard Rover

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

STELLAR CHEMISTRY
Old-economy sectors are now tech, too: US study

Diamantino Sforza - Gentleman Farmer of Prince George's County

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

STELLAR CHEMISTRY
China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

STELLAR CHEMISTRY
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

STELLAR CHEMISTRY
Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

Soyuz-2.1a Rocket Takes Military Satellite to Designated Orbit

Russia's Vostochny Cosmodrome Construction Reaches Home Stretch

STELLAR CHEMISTRY
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

STELLAR CHEMISTRY
US Military Satellite Explodes, Sending Chunks of Debris Into Orbit

UK Space Agency's second CubeSat mission is taking shape

Debris Fills Orbit as US Satellite Explodes

Smart crystallization




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.