. | . |
Turning to the brain to reboot computing by Staff Writers Albuquerque NM (SPX) Oct 04, 2016
Computation is stuck in a rut. The integrated circuits that powered the past 50 years of technological revolution are reaching their physical limits. This predicament has computer scientists scrambling for new ideas: new devices built using novel physics, new ways of organizing units within computers and even algorithms that use new or existing systems more efficiently. To help coordinate new ideas, Sandia National Laboratories has assisted organizing the Institute of Electrical and Electronics Engineers (IEEE) International Conference on Rebooting Computing held Oct. 17-19. Researchers from Sandia's Data-driven and Neural Computing Dept. will present three papers at the conference, highlighting the breadth of potential non-traditional neural computing applications. "We're taking a stab at the scope of what neural algorithms can do. We're not trying to be exhaustive, but rather we're trying to highlight the kind of application over which algorithms may be impactful," said Brad Aimone, a computational neuroscientist and co-author of one paper. Historically, neural computing has been seen as approximate and fuzzy, he added; however, Sandia researchers in their papers aim to extend neural algorithms so they incorporate rigor and predictability, which shows they may have a role in high performance scientific computing. The three papers are entitled "Overcoming the Static Learning Bottleneck - the Need for Adaptive Neural Learning" by Craig Vineyard and Steve Verzi; "Computing with Dynamical Systems" by Fred Rothganger; and "Spiking Network Algorithms for Scientific Computing" by William Severa, Ojas Parekh, Kris Carlson, Conrad James and Aimone.
Troubles and benefits of continuously learning Most so-called machine-learning algorithms have a learning phase and a separate testing and operation phase. This is really time consuming. Ambitious - and challenging - attempts to develop algorithms that learn continuously also run the risk of the algorithm "learning" something that's wrong, Vineyard said. His paper argues for continual learning and suggests the use of game theory - the mathematics of logical decisions, such as when to take out the trash and when to hope your roommate will do it for you - to bring precision to the decision of when an algorithm should learn.
What are dynamical systems anyway? Both our brains and, in a way, conventional computers are dynamical systems: They find answers just based on the question and how the computers are constructed, said Rothganger. His paper proposes that if researchers think of a traditional scientific computing problem, matrix decomposition, as a dynamical system, they could solve them rigorously on neuro-inspired systems. "There's a lot of potential and also a lot of risk in the idea I'm working on," said Rothganger. If his idea works, "it would provide a point of unification between neural algorithms and traditional numerical algorithms."
Artisan mathematicians craft spiking network algorithms An example of these innovative algorithms is a kind of flow estimation called particle image velocimetry. By taking two pictures of dust motes moving through the air and figuring out how far they moved in the time between photos, researchers can determine the speed of the air and any local eddies. This can be done on a conventional computer using fancy math, but Severa's method uses the massively parallel nature of neurons to calculate all the possible shifts efficiently, he said. "By carefully designing your networks and the properties of your neurons, you can do exact things," said Severa. "You can push the envelope of what you can expect a neural network to do." Whether the future holds neuro-inspired computers in your cellphone that understand phrases like "Show me a cute picture of Fluffy" and "Order my favorite Chinese food," or if neural computers can also work alongside future quantum computers in solving tough math problems quickly, computing needs to be reinvented, and soon, said Aimone. By bringing together experts in many different disciplines, he said the International Conference on Rebooting Computing aims to nurture new ideas and spur this revolution. Funding for all the projects was provided by Sandia's Laboratory Directed Research and Development office. Two projects also were part of the Hardware Acceleration of Adaptive Neural Algorithms (HAANA) Grand Challenge.
The broader rebooting computing effort DeBenedictis, Sapan Agarwal, Jeanine Cook and Michael Frank also are presenting four papers on low-energy logic and memory. Christopher DeRose and Tony Lentine are presenting a paper on optical communications.
Related Links Sandia National Laboratories Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |