. 24/7 Space News .
SOLAR SCIENCE
Tracking a solar eruption through the Solar System
by Staff Writers
Paris (ESA) Aug 17, 2017


The location of various spacecraft during the Sun's coronal mass ejection (CME) on 14 October 2014. The separations of the planets are not shown to scale; their distances from the Sun, shown on the left hand side, are given in astronomical units (AU) and reflect the distance at the time the CME measurements were made (for other planets the average distance is given). Rosetta and comet were at 3.1 AU from the Sun. The dates at which the spacecraft began to feel the effects of the CME are indicated on the right-hand scale. Three Sun-watching satellites in Earth's vicinity - ESA's Proba-2, the ESA/NASA SOHO satellite and NASA's SDO - captured images of the event, while the other spacecraft indicated were in the firing line and made in situ observations of, for example, an enhancement of the magnetic field strength, increases in the solar wind speed, and decreases in the influx of the galactic cosmic rays. NASA's Stereo-A also captured images from its viewing position, while other data were recorded by ESA's Venus Express, Mars Express and Rosetta, NASA's Mars Odyssey and Maven orbiters and its Curiosity rover, and the NASA/ESA/ASI Cassini spacecraft. Although inconclusive, hints of the CME were also seen at NASA's New Horizons and Voyager-2 three months and about 17 months later, respectively. The CME propagated from the Sun at an angle of at least 116+ (as defined by the detections made in the vicinity of Venus and Mars) with a speed of ~1000 km/s at the Sun to about 450-500 km/s at the distance of Saturn a month later. Image courtesy ESA. For a larger version of this image please go here.

Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the Solar System while three other satellites watched, providing a unique perspective on this space weather event. Scientists working on ESA's Mars Express were looking forward to investigating the effects of the close encounter of Comet Siding Spring on the Red Planet's atmosphere on 19 October 2014, but instead they found what turned out to be the imprint of a solar event.

While this made the analysis of any comet-related effects far more complex than anticipated, it triggered one of the largest collaborative efforts to trace the journey of an interplanetary 'coronal mass ejection' - a CME - from the Sun to the far reaches of the outer Solar System.

Although Earth itself was not in the firing line, a number of Sun-watching satellites near Earth - ESA's Proba-2, the ESA/NASA SOHO and NASA's Solar Dynamics Observatory - had witnessed a powerful solar eruption a few days earlier, on 14 October. NASA's Stereo-A not only captured images of the other side of the Sun with respect to Earth, but also collected in situ information as the CME rushed passed.

Thanks to the fortuitous locations of other satellites lying in the direction of the CME's travel, unambiguous detections were made by three Mars orbiters - ESA's Mars Express, NASA's Maven and Mars Odyssey - and NASA's Curiosity Rover operating on the Red Planet's surface, ESA's Rosetta at Comet 67P/Churyumov-Gerasimenko, and the international Cassini mission at Saturn.

Hints were even found as far out as NASA's New Horizons, which was approaching Pluto at the time, and beyond to Voyager-2. However, at these large distances it is possible that evidence of this specific eruption may have merged with the background solar wind.

"CME speeds with distance from the Sun is not well understood, in particular in the outer Solar System," says ESA's Olivier Witasse, who led the study.

"Thanks to the precise timings of numerous in situ measurements, we can better understand the process, and feed our results back into models."

The measurements give an indication of the speed and direction of travel of the CME, which spread out over an angle of at least 116+ to reach Venus Express and Stereo-A on the eastern flank, and the spacecraft at Mars and Comet 67P Churyumov-Gerasimenko on the western flank.

From an initial maximum of about 1000 km/s estimated at the Sun, a strong drop to 647 km/s was measured by Mars Express three days later, falling further to 550 km/s at Rosetta after five days. This was followed by a more gradual decrease to 450-500 km/s at the distance of Saturn a month since the event.

The data also revealed the evolution of the CME's magnetic structure, with the effects felt by spacecraft for several days, providing useful insights on space weather effects at different planetary bodies. The signatures at the various spacecraft typically included an initial shock, a strengthening of the magnetic field, and increases in the solar wind speed.

In the case of ESA's Venus Express, its science package was not switched on because Venus was 'behind' the Sun as seen from Earth, limiting communication capabilities.

A faint indication was inferred from its star tracker being overwhelmed with radiation at the expected time of passage.

Furthermore, several craft carrying radiation monitors - Curiosity, Mars Odyssey, Rosetta and Cassini ��- revealed an interesting and well-known effect: a sudden decrease in galactic cosmic rays. As a CME passes by, it acts like a protective bubble, temporarily sweeping aside the cosmic rays and partially shielding the planet or spacecraft.

A drop of about 20% in cosmic rays was observed at Mars - one of the deepest recorded at the Red Planet - and persisted for about 35 hours. At Rosetta a reduction of 17% was seen that lasted for 60 hours, while at Saturn the reduction was slightly lower and lasted for about four days. The increase in the duration of the cosmic ray depression corresponds to a slowing of the CME and the wider region over which it was dispersed at greater distances.

"The comparison of the decrease in galactic cosmic ray influx at three widely separated locations due to the same CME is quite novel," says Olivier. "While multispacecraft observations of CMEs have been done in the past, it is uncommon for the circumstances to be such to include so many spread across the inner and outer Solar System like this.

"Finally, coming back to our original intended observation of the passage of Comet Siding Spring at Mars, the results show the importance of having a space weather context for understanding how these solar events might influence or even mask the comet's signature in a planet's atmosphere."

"Interplanetary coronal mass ejection observed at Stereo-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn and New Horizons en route to Pluto. Comparison of its Forbush decreases at 1.4, 3.1 and 9.9 AU," by O. Witasse et al. is published in Journal of Geophysical Research: Space Physics, a journal of the American Geophysical Union.

SOLAR SCIENCE
NASA instrument key to understanding solar powered planet arrives at Kennedy Space Center
Greenbelt MD (SPX) Aug 09, 2017
A new instrument that will monitor our planet's biggest power source, the Sun, arrived at NASA's Kennedy Space Center in Florida. It has a targeted November 2017 launch on a SpaceX Falcon 9 rocket to the International Space Station. The Total Solar and Spectral Irradiance Sensor (TSIS-1) instrument was built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP ... read more

Related Links
Space Science at ESA
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
SpaceX launches super-computer to space station

NASA: let's say something to Voyager 1 on 40th anniversary of launch

Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

SOLAR SCIENCE
SHIIVER tank arrives at NASA's Marshall Center for spray-on foam insulation

'Dragon captured' as cargo arrives at space station

SpaceX launches super-computer to space station

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SOLAR SCIENCE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

SOLAR SCIENCE
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

SOLAR SCIENCE
Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

SOLAR SCIENCE
Archinaut Project conducts first large-scale 3D build in space-like environment

Air Force tests new radar receivers for rescue helicopters

Lockheed Martin integrates first modernized A2100 satellite

Marine Corps testing mobile 3D printing lab

SOLAR SCIENCE
Tidally locked exoplanets may be more common than previously thought

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

SOLAR SCIENCE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.