. | . |
The hottest white dwarf in the Galaxy by Staff Writers Tubingen, Germany (SPX) Nov 27, 2015
Astronomers at the Universities of Tubingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky Way has already even entered its cooling phase. The researchers also were the first to observe an intergalactic gas cloud moving towards the Milky Way - indicating that galaxies collect fresh material from deep space, which they can use to make new stars. These findings are published in the latest Astronomy and Astrophysics. Relatively low-mass stars - like our Sun - get extremely hot towards the end of their lives. The Sun's surface temperature has been fairly constant at around 6000 degrees Celsius since its birth 4.6 million years ago. Immediately before its source of nuclear energy is exhausted in about five billion years, the Sun will reach thirty times that temperature, going to 180,000 degrees before cooling down as a white dwarf. Computer simulations suggest that stars can become even hotter than that. The highest temperature of an observed dying star was measured to be 200,000 degrees. The researchers' evaluation of ultraviolet spectra taken by the Hubble Space Telescope points to a new record of 250,000 degrees - a temperature which can only be reached by a star some five times more massive than our Sun. The white dwarf, RX J0439.8-6809, has already entered the cooling phase. It appears to have reached its maximum temperature of 400,000 degrees about a thousand years ago. Its chemical composition is not yet understood. Analyses show that carbon and oxygen are present on its surface - the products of the nuclear fusion of helium, a process which normally takes place deep in the core of a star. RX J0439.8-6809 was first noticed more than 20 years ago as a very bright spot on X-ray images, indicating a source of tremendous heat. Originally it was thought to be a white dwarf carrying out nuclear fusion on its surface using hydrogen drawn from a companion star. Astronomers also assumed it was located in our neighboring galaxy, the Large Magellanic Cloud. But the new Hubble data show that the star is on the outskirts of the Milky Way, and is moving away from us at a speed of 220 kilometers per second. The star's ultraviolet spectrum held another surprise. It indicates the presence of gas which does not belong to the star; it is part of a cloud between the Milky Way and RX J0439.8-6809. The Doppler effect enables the researchers to determine that this gas cloud is moving away from us at 150 kilometers per second and moves toward the Milky Way. Astronomers knew of the existence of gases traveling at high speed in the direction of the Large Magellanic Cloud, but were unable to tell for sure if they were in the Milky Way or in the LMC. Finding such gas in the spectrum of RX J0439.8-6809 now offers proof that the gas cloud belongs to the Milky Way. But its chemical composition indicates that it originated from intergalactic space - evidence that galaxies collect fresh material from deep space, which they can use to make new stars.
Analysis of the star: K. Werner, T. Rauch: Astronomy and Astrophysics, Vol. 584 (December 2015), A19, DOI:
Analysis of the cloud: P. Richter, K.S. de Boer, K. Werner, T. Rauch: Astronomy and Astrophysics, Vol. 584 (December 2015), L6, DOI:
Related Links Universities of Tubingen Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |