. 24/7 Space News .
TIME AND SPACE
The 'great smoky dragon' of quantum physics
by Staff Writers
Vienna, Austria (SPX) Mar 17, 2016


In the 1970s, the American physicist John Archibald Wheeler (1911-2008) metaphorically compared the fundamental indefiniteness of quantum mechanical phenomena with a "great smoky dragon": One can see the tail, that is the source of the particles, and the head, which are the measurement results. But in between the whole body is covered in smoke. Image courtesy Xiao-song Ma. For a larger version of this image please go here.

Since the 17th century, science was intrigued by the nature of light. Isaac Newton was certain that it consists of a stream of particles. His contemporary Christiaan Huygens, however, argued that light is a wave. Modern quantum physics says that both were right. Light can be observed both as particles and as waves - depending which characteristic is measured in an experiment, it presents itself more as one or the other.

This so-called wave-particle dualism is one of the foundational principles of quantum physics. This questions our common sense: can one and the same indeed be of two contradictory natures at the same time?

Measuring the undefined
In the 1970s, the American physicist John Archibald Wheeler (1911-2008) metaphorically compared the fundamental indefiniteness of quantum mechanical phenomena with a "great smoky dragon": One can see the tail, that is the source of the particles, and the head, which are the measurement results. But in between the whole body is covered in smoke. And this smoke cannot be removed: Only the measurement defines the phenomenon, not the other way round.

To put this concept into a concrete setting, Wheeler proposed his famous delayed-choice thought experiment. In this thought experiment, the choice to determine the particle or wave nature is delayed or even changed during the experiment. Thereby, one and the same phenomenon, for instance light, manifests itself as a particle or as a wave in the same experiment. It can therefore indeed be both, depending on the time and nature of the measurement.

In the past decades, quantum physicists have tried to experimentally test Wheeler's thought experiment to empirically substantiate the wave-particle duality.

Xiao-song Ma from the Nanjing University, Johannes Kofler from the Max Planck Institute of Quantum Optics, and Anton Zeilinger from the University of Vienna and the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now shown the success of this endeavor in an extensive study, which sums up and evaluates the whole history of delayed choice experiments.

While the concept of wave-particle duality can be traced back to Albert Einstein's explanation of the photoelectric effect via photons in 1905, it took until the 1980s that the first delayed-choice experiments were realized.

"Only through the development of modern quantum optical techniques for the fast and precise measurement of light it was possible to put Wheeler's thought experiment into practice", says Xiao-song Ma, lead author of the study.

Important for quantum cryptography and quantum computers
"Experiments of this kind confront us with fundamental questions of quantum physics", adds Anton Zeilinger.

"However, they also have significance for future applications such as in quantum cryptography or the development of quantum computers."

Delayed-choice experiments can be applied to the quantum mechanical phenomenon of entanglement, which is important for the security of quantum communication. Regarding quantum computers, there are certain scenarios where delayed-choice experiments can increase the computation speed.

The authors of the study, which now appeared in the journal Reviews of Modern Physics, expect that delayed-choice experiments will continue to bring further insights into quantum physics as well as practical applications for technologies basing on them.

Research paper: "Delayed-choice gedanken experiments and their realizations". Xiao-song Ma, Johannes Kofler, Anton Zeilinger. Reviews of Modern Physics, 2016


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Flexible skin that traps radar waves, cloaks objects
Ames IA (SPX) Mar 17, 2016
Iowa State University engineers have developed a new flexible, stretchable and tunable "meta-skin" that uses rows of small, liquid-metal devices to cloak an object from the sharp eyes of radar. The meta-skin takes its name from metamaterials, which are composites that have properties not found in nature and that can manipulate electromagnetic waves. By stretching and flexing the polymer meta-ski ... read more


TIME AND SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TIME AND SPACE
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

TIME AND SPACE
Space travel rules needed within 5 years: UN

Jacobs Joins Coalition for Deep Space Exploration

Space Race Competition helps turn NASA Tech into new products

Broomstick flying or red-light ping-pong? Gadgets at German fair

TIME AND SPACE
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

TIME AND SPACE
Grandpa astronaut to break Scott Kelly's space record

Three new members join crew of International Space Station

Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

TIME AND SPACE
ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Launch of Dragon Spacecraft to ISS Postponed Until April

ISRO launches PSLV C32, India's sixth navigation satellite

TIME AND SPACE
VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

TIME AND SPACE
Outsourcing crystal growth...to space

International research team achieves controlled movement of skyrmions

Light helps the transistor laser switch faster

UA's Space Expertise Seen as Key for US Security









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.