Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
The Magellanic Group And Its Seven Dwarf Galaxies
by Staff Writers
Zurich, Switzerland (SPX) Oct 15, 2008


Lake and D'Onghia have put all these puzzle pieces together to propose that the Magellanic Clouds were the largest members of a group of dwarf galaxies that entered the Milky Way dark halo not long ago. Seven of the eleven brightest satellite galaxies of our Milky Way were part of this group.

Astronomers at the University of Zurich have proposed a new theory for the formation of dwarf galaxies. In a paper published in "The Astrophysical Journal", Elena D'Onghia and George Lake solve several outstanding problems by comparing observed dwarfs to supercomputer simulations of their formation.

The properties of dwarf galaxies have presented many challenges. "Ten years ago, my team at the University of Washington found that our cosmological model predicts 30-50 times as many small objects as we see. If the numbers had been nearly equal, that would have been an easy success for the model. If there were none, we might figure out a way to keep any from forming" says lead author George Lake "but at the risk of confusing fairy tales, having 30-50 times fewer dwarfs than predicted presents a 'Goldilock's problem'. How do we keep most of them from forming, but not all?"

The main theory to prevent the formation of luminous dwarfs has been that events in the early Universe remove the gas that might have formed stars. The first of these events is the global heating and reionization of the Universe that happens within a billion years after the big bang.

In this theory, the small fraction of dwarfs that form quickly enough escape destruction. "While this is an interesting idea, it doesn't explain why most of the dwarfs have stars that form much later than this" says Lake.

There is also the odd grouping of dwarfs. "Like those of the correct fairy tale, the dwarfs that we have are 'friendly', they group together both within our galaxy and in nearby associations" continues co-author Elena D'Onghia.

"One might even think they've seen the movie as seven of them are associated with The Magellanic Clouds, the largest satellites of the Milky Way that are easily seen if you are lucky enough to view the sky from the Southern Hemisphere".

In the past, other researchers have noticed that as galaxies form hierarchically in the Universe, that many of the pieces come in as groups of small objects. "The critical element of these groups of dwarfs isn't that they are a club, but rather they have a 'dwarf leader' or 'parent'.

When events in the early Universe expels the gas in the smallest object, the dwarf leader shepherds this gas and allows its small companions to recapture it at later times" says D'Onghia.

Lake and D'Onghia have put all these puzzle pieces together to propose that the Magellanic Clouds were the largest members of a group of dwarf galaxies that entered the Milky Way dark halo not long ago. Seven of the eleven brightest satellite galaxies of our Milky Way were part of this group.

New simulations performed at the University of Zurich show that it is typical for dwarf galaxies to form in groups and enter large galaxies at late times. The group is then disrupted by tidal forces, spreading the small population of luminous dwarfs around the Milky Way making the satellite galaxies we observe today.

New measurements by scientists at Harvard University including Nitya Kallivayalil and Gurtina Besla indicate that the Magellanic Clouds are moving faster than previously believed and may have entered the Milky Way recently.

"The scenario proposed by D'Onghia and Lake fits in well with these observational determinations and may account for many facets of the satellite population of the Milky Way", according to Lars Hernquist of Harvard University.

As well as wrapping up several problems in galaxy formation, their theory makes clear predictions that will be tested rapidly. One such prediction is that isolated dwarf and satellite galaxies will be found to have companions. Since their theory was first circulated, the dwarf galaxy Leo IV was found to have another little Leo V companion in July. The existence of nearby dwarf associations also supports this new theory.

Lake and D'Onghia are located in the Institute of Theoretical Physics at the University of Zurich. This Institute is known for the pioneering work in relativity and cosmology. Most recently, they have been leaders in predicting the distribution and properties of dark matter in the Universe.

.


Related Links
University of Zurich
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
The Winds Of Baby Stars
Bonn, Germany (SPX) Oct 13, 2008
New high-resolution observations with the VLT Interferometer of the European Southern Observatory in Chile reveal gas infall and outflow processes in the direct environment of six young stars. The origin of the gas emission from these stars is still strongly debated, since earlier investigations could not resolve the gas distribution close to the star. An international team of astronomers ... read more


STELLAR CHEMISTRY
Japan Maps Lunar Far Side Gravity Field

Chandrayaan-1 Ready For First Indian Mission To Moon

AGI And X PRIZE Foundation Partner For Moon Prize

India to launch unmanned lunar mission this month

STELLAR CHEMISTRY
Phoenix Weathers Dust Storm

The Sun Is Setting On Phoenix

Opportunity Takes A Victory Lap

Smaller And More Recent Features On Mars Can Now Be Dated

STELLAR CHEMISTRY
Russian Space Tourist To Lose Out To Kazakh Astronaut

Spinoff 2008 Highlights NASA Innovations In Everyday Life

Intermediate eXperimental Vehicle

NASA Selects ITT For Space Communications Network Services

STELLAR CHEMISTRY
China To Launch FY-4 Weather Satellite Around 2013

Shenzhou 7 Astronauts In Good Health

Chinese Scientists Start Studying Samples From Shenzhou-7

China Sets Sights On First Space Station

STELLAR CHEMISTRY
Expedition 18 Crew Docks With Space Station

Expedition 18 Crew Launches From Baikonur

Space station crew might not be expanded

Expedition 18 Crew To Launch From Baikonur

STELLAR CHEMISTRY
NASA To Webcast IBEX Spacecraft Launch

New ASTRA 1M Satellite To Be Launched On 31 October

Ariane 5 Is Readied For A Dual-Payload Mission

Arianespace Flight 186 Set For End Of November

STELLAR CHEMISTRY
Exotic Weather On Distant Worlds

Tides Have Major Impact On Planet Habitability

NASA Supercomputer Shows How Dust Rings Point To Exo-Earths

A Strategy For Detecting Earth-Like Planets

STELLAR CHEMISTRY
MSV Awarded Patents For Next-Gen Satellite-Terrestrial Comms Network

Theory Explains Mysterious Nature Of Glass

Youngsters Flying High After Winning Top UK Space Competition

Clyde Space Delivers Battery Charge Controllers For RASAT




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement