. | . |
The Greenland ice sheet contains nutrients from precipitation by Staff Writers Copenhagen, Denmark (SPX) Nov 06, 2015
New research shows that the ice sheet on Greenland contains the nutrient phosphorus, which was carried by the atmosphere across the country, where it fell with precipitation. Studies of the ice core drilling through the kilometers-thick ice sheet shows that there are differences in the amount of phosphorus in warm and cold climate periods. This new knowledge is important for understanding how many nutrients can be expected to flow into the Arctic Ocean when the climate warms and the ice melts and flows into the sea, where nutrients give rise to increased algae growth. The results have been published in the Journal of Geophysical Research. Phosphorus is an essential nutrient for plant growth in nature and as a fertilizer for food production. 30 percent of all biological systems rely on phosphorus and nitrate. Nutrients that are not taken up by plants can get washed out into streams and further into the ocean. In addition, phosphorus from the atmosphere is carried to the deep seas, far from land, in the form of precipitation with dust particles. When the sun heats the ocean, some of the water evaporates and rises up into the atmosphere, forming clouds. The clouds can reach an altitude of up to 15 kilometers and they disperse across the entire globe.
Precipitation and dust storms But the oceans are not the only contributors of phosphorus. On Earth, there are sometimes great storms that blow dust from dry areas up into the atmosphere, where it spreads across the globe and falls, including on Greenland. The dust also contains phosphorus. Everything that comes down from the atmosphere can be measured in the ice cores. "We have analysed the ice from different periods between the ice age and the present. We look at what the total content of phosphorus is and how much of the phosphorus is comprised of the special ion PO43- - called phosphate, which is biologically soluble. Both the amounts of phosphorus and the ratio between the two variants, phosphorus and phosphate, tell us something about the atmospheric transport of nutrients," explains Helle Astrid Kjaer, a postdoc at the Centre for Ice and Climate at the Niels Bohr Institute at the University of Copenhagen.
Most phosphorus in cold periods "Much of the phosphorus we find in the cold periods is linked to the dust that comes in from the large dust storms. We can see this because it primarily involves the form of phosphate that is not as biodegradable," explains Helle Astrid Kjaer. But they can also see that when there are large volcanic eruptions spewing tons of ash and sulphur far up into the atmosphere, then the atmosphere becomes more acidic and then the phosphorus dissolves into the dust from the dust storms and becomes more soluble and thus more biologically available. You see this, for example, in connection with the large Icelandic Laki eruption in 1783 and in 1816 with the Tambora eruption in Indonesia. Measurements from the period 1770-1820 also show phosphorus, but with a higher ratio of the special ion PO43- - called phosphate, which is biodegradable. The phosphate is bound together with particles in the atmosphere from large forest fires, while the phosphorus comes from dust. "Measurements from 1930-2004, on the other hand, do not show large amounts of phosphorus and phosphate and this is very surprising, because we use a lot of manure and burn refuse, which can result in large amounts of phosphorus in nature, but it evidently has not reached northern Greenland in precipitation," explains Helle Astrid Kjaer. The nutrient content of the ice is important in a time when we are facing global warming that could mean that large parts of the Greenland ice sheet will melt and flow into the sea. Large amounts of nutrients could lead to an increased growth of algae in the Arctic Ocean. The research, however, which was done in collaboration with researchers from Japan and Italy, does not look alarming. "The amounts of phosphorus and phosphate we have measured are not high compared to the level we normally see in the ocean, but because the ice primarily melts in the spring and summer when the algae are growing and have already used much of the nutrients in the surface water, the level of melt water could lead to an increased growth of algae in the Arctic Ocean," says Helle Astrid Kjaer. Article: Greenland ice cores constrain glacial atmospheric fluxes of phosphorus
Related Links University of Copenhagen - Niels Bohr Institute Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |