Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
The Complicated Birth of a Volcano
by Staff Writers
Kiel, Germany (SPX) Oct 21, 2013


3D representation of the Marie Byrd Seamounts. Graphics: R. Werner, GEOMAR, data basis: Smith and Sandwell (1997, Science 277)

They are difficult to reach, have hardly been studied scientifically, and their existence does not fit into current geological models: the Marie Byrd Seamounts off the coast of Antarctica present many riddles to volcanologists.

In the international journal "Gondwana Research", scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel in cooperation with colleagues from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research just published possible explanations for the origin of these former volcanoes and thus contributed to the decryption of complex processes in the Earth's interior.

Snow storms, ice and glaciers - these are the usual images we associate with the Antarctic. But at the same time it is also a region of fire: the Antarctic continent and surrounding waters are dotted with volcanoes - some of them still active and others extinct for quite some time. The Marie Byrd Seamounts in the Amundsen Sea are in the latter group. Their summit plateaus are today at depths of 2400-1600 meters.

Because they are very difficult to reach with conventional research vessels, they have hardly been explored, even though the Marie Byrd Seamounts are fascinating formations. They do not fit any of the usual models for the formation of volcanoes. Now geologists from GEOMAR Helmholtz Centre for Ocean Research Kiel were able to find a possible explanation for the existence of these seamounts on the basis of rare specimens. The study is published in the international journal "Gondwana Research".

Classic volcanologists differentiate between two types of fire mountains. One type is generated where tectonic plates meet, so the earth's crust is already cracked to begin with. The other type is formed within the earth's plates.

"The latter are called intraplate volcanoes. They are often found above a so-called mantle plume. Hot material rises from the deep mantle, collects under the earth's crust, makes its way to the surface and forms a volcano," said Dr. Reinhard Werner, one of the authors of the current paper. One example are the Hawaiian Islands. But neither of the above models fits the Marie Byrd Seamounts.

"There are no plate boundaries in the vicinity and no plumes underground," says graduate geologist Andrea Kipf from GEOMAR, first author of the study.

To clarify the origin of the Marie Byrd Seamounts, in 2006 the Kiel scientists participated in an expedition of the research vessel POLARSTEN in the Amundsen Sea. They salvaged rock samples from the seamounts and subjected these to thorough geological, volcanological and geochemical investigations after returning to the home labs.

"Interestingly enough, we found chemical signatures that are typical of plume volcanoes. And they are very similar to volcanoes in New Zealand and the Antarctic continent," says geochemist Dr. Folkmar Hauff, second author of the paper.

Based on this finding, the researchers sought an explanation. They found it in the history of tectonic plates in the southern hemisphere. Around 100 million years ago, remains of the former supercontinent Gondwana were located in the area of present Antarctica. A mantle plume melted through this continental plate and cracked it open. Two new continents were born: the Antarctic and "Zealandia", with the islands of New Zealand still in evidence today.

When the young continents drifted in different directions away from the mantle plume, large quantities of hot plume material were attached to their undersides. These formed reservoirs for future volcanic eruptions on the two continents. "This process explains why we find signatures of plume material at volcanoes that are not on top of plumes," says Dr. Hauff.

But that still does not explain the Marie Byrd Seamounts because they are not located on the Antarctic continent, but on the adjacent oceanic crust instead. "Continental tectonic plates are thicker than the oceanic ones.

This ensures, among other things, differences in temperature in the underground," says volcanologist Dr. Werner. And just as air masses of different temperatures create winds, the temperature differences under the earth's crust generate flows and movements as well.

Thus the plume material, that once lay beneath the continent, was able to shift under the oceanic plate. With disruptions due to other tectonic processes, there were cracks and crevices which allowed the hot material to rise, turn into magma and then- about 60 million years ago - allowed the Marie Byrd Seamounts to grow. "This created islands that are comparable to the Canary Islands today," explains Andrea Kipf.

"Some day the volcanoes became extinct again, wind and weather eroded the cone down to sea level, and other geological processes further eroded the seamounts. Finally, the summit plateaus arrived at the level that we know today," the PhD student describes the last step of the development.

Based on the previously little investigated Marie Byrd Seamounts, the researchers were able to show another example of how diverse and complex the processes are, that can cause volcanism. "We are still far from understanding all of these processes. But with the current study, we can contribute a small piece to the overall picture," says Dr. Werner.

Kipf, A. , F. Hauff, R. Werner, K. Gohl, P. van den Bogaard, K. Hoernle, D. Maicher, Klugel A. (2013, in press): Seamounts off the West Antarctic margin: A case for non-hotspot driven intra-plate volcanism. Gondwana Research;

.


Related Links
GEOMAR Helmholtz Centre for Ocean Research
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
3D model reveals new information about iconic volcano
Uppsala, Sweden (SPX) Oct 15, 2013
The volcano on the Scottish peninsula Ardnamurchan is a popular place for the study of rocks and structures in the core of a volcano. Geology students read about it in text books and geologists have been certain that the Ardnamurchan volcano have three successive magma chambers. However, an international group of researchers, lead from Uppsala University, Sweden, has now showed that the volcano ... read more


SHAKE AND BLOW
Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

SHAKE AND BLOW
India sets November 5 for Mars mission launch

MAVEN Launch Preps on Schedule

Phobos-Grunt-2: Russia to probe Martian moon by 2022

Russian scientists set sights on space

SHAKE AND BLOW
US firm offers 30 kilometer-high balloon ride

NASA strives to tame 'big data' flowing in from dozens of missions

Chinese no longer banned from NASA astronomy meet

'Pillownauts' spend 3 weeks in bed as part of astronaut studies

SHAKE AND BLOW
Is China Challenging Space Security

NASA's China policy faces mounting pressure

Ten Years of Chinese Astronauts

NASA vows to review ban on Chinese astronomers

SHAKE AND BLOW
Cygnus cargo craft leaves international space station

Cygnus cargo craft readies to leave space station

Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

First CASIS Funded Payloads Berthed to the ISS

SHAKE AND BLOW
Takeoff of Proton LV with US satellite may be put off until Oct 25

Technical glitch will delay launch of European space mission

Astrium awarded three new contracts by ESA for Ariane 6 and Ariane 5 ME launchers

Sounding Rocket Calibrates NASA's SDO Instrument

SHAKE AND BLOW
Count of discovered exoplanets passes the 1,000 mark

Iowa research team see misaligned planets in distant system

Astronomer see misaligned planets in distant system

Water discovered in remnants of extrasolar rocky world orbiting white dwarf

SHAKE AND BLOW
NASA Laser Communication System Sets Record with Data Transmissions to and from Moon

NSF Awards $12 Million to SDSC to Deploy "Comet" Supercomputer

Rice scientists create a super antioxidant

Cracked metal, heal thyself




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement