. | . |
Testing quantum field theory in a quantum simulator by Staff Writers Vienna, Austria (SPX) May 26, 2017
What happened right after the beginning of the universe? How can we understand the structure of quantum materials? How does the Higgs-Mechanism work? Such fundamental questions can only be answered using quantum field theories. These theories do not describe particles independently from each other; all particles are seen as a collective field, permeating the whole universe. But these theories are often hard to test in an experiment. At the Vienna Center for Quantum Science and Technology (VCQ) at TU Wien, researchers have now demonstrated how quantum field theories can be put to the test in new kinds of experiments. They have created a quantum system consisting of thousands of ultra cold atoms. By keeping them in a magnetic trap on an atom chip, this atom cloud can be used as a "quantum simulator", which yields information about a variety of different physical systems and new insights into some of the most fundamental questions of physics.
Complex Quantum Systems - More than the Sum of their Parts The classical systems we know from daily experience are quite different: The trajectories of the balls on a billiard table can be studied separately - the balls only interact when they collide. "In a highly correlated quantum system such as ours, made of thousands of particles, the complexity is so high that a description in terms of its fundamental constituents is mathematically impossible", says Thomas Schweigler, the first author of the paper. "Instead, we describe the system in terms of collective processes in which many particles take part - similar to waves in a liquid, which are also made up of countless molecules." These collective processes can now be studied in unprecedented detail using the new methods.
Higher Correlations "When we have a classical gas and we measure two particles at two separate locations, this result does not influence the probability of finding a third particle at a third point in space", says Jorg Schmiedmayer. "But in quantum physics, there are subtle connections between measurements at different points in space. These correlations tell us about the fundamental laws of nature which determine the behaviour of the atom cloud on a quantum level." "The so-called correlation functions, which are used to mathematically describe these relationships, are an extremely important tool in theoretical physics to characterize quantum systems", says Professor Jurgen Berges (Institute for Theoretical Physics, Heidelberg University). But even though they have played an important part in theoretical physics for a long time, these correlations could hardly be measured in experiments. With the help of the new methods developed at TU Wien, this is now changing: "We can study correlations of different orders - up to the tenth order. This means that we can investigate the relation between simultaneous measurements at ten different points in space", Schmiedmayer explains. "For describing the quantum system, it is very important whether these higher correlations can be represented by correlations of lower order - in this case, they can be neglected at some point - or whether they contain new information."
Quantum Simulators This is especially important because quantum correlations play a crucial role in many, seemingly unrelated physics questions: Examples are the peculiar behaviour of the young universe right after the big bang, but also for special new materials, such as the so-called topological insulators. Important information on such physical systems can be gained by recreating similar conditions in a model system, like the atom clouds. This is the basic idea of quantum simulators: Much like computer simulations, which yield data from which we can learn something about the physical world, a quantum simulation can yield results about a different quantum system that cannot be directly accessed in the lab.
Lausanne, Switzerland (SPX) May 18, 2017 In a recent experiment at EPFL, a microwave resonator, a circuit that supports electric signals oscillating at a resonance frequency, is coupled to the vibrations of a metallic micro-drum. By actively cooling the mechanical motion close to the lowest energy allowed by quantum mechanics, the micro-drum can be turned into a quantum reservoir - an environment that can shape the states of the ... read more Related Links Vienna University of Technology Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |