Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
TU Vienna develops light transistor
by Staff Writers
Vienna, Austria (SPX) Jul 10, 2013


The oscillation direction of a light wave is changed as it passes through a thin layer of a special material.

TU Vienna has managed to turn the oscillation direction of beams of light - simply by applying an electrical current to a special material. This way, a transistor can be built that functions with light instead of electrical current.

Light can oscillate in different directions, as we can see in the 3D cinema: Each lens of the glasses only allows light of a particular oscillation direction to pass through. However, changing the polarization direction of light without a large part of it being lost is difficult. The TU Vienna has now managed this feat, using a type of light - terahertz radiation - that is of particular technological importance.

An electrical field applied to an ultra-thin layer of material can turn the polarisation of the beam as required. This produces an efficient transistor for light that can be miniaturised and used to build optical computers.

Rotated light - the Faraday effect
Certain materials can rotate the polarization direction of light if a magnetic field is applied to them. This is known as the Faraday effect. Normally, this effect is minutely small, however.

Two years ago, Prof. Andrei Pimenov and his team at the Institute of Solid State Physics of TU Vienna, together with a research group from the University of Wurzburg, managed to achieve a massive Faraday effect as they passed light through special mercury telluride platelets and applied a magnetic field.

At that time, the effect could only be controlled by an external magnetic coil, which has severe technological disadvantages. "If electro-magnets are used to control the effect, very large currents are required", explains Andrei Pimenov.

Now, the turning of terahertz radiation simply by the application of an electrical potential of less than one volt has been achieved. This makes the system much simpler and faster.

It is still a magnetic field that is responsible for the fact that the polarisation is rotated, however, it is no longer the strength of the magnetic field that determines the strength of the effect, but the amount of electrons involved in the process, and this amount can be regulated simply by electrical potential. Hence only a permanent magnet and a voltage source suffice, which is technically comparatively easy to manage.

Terahertz radiation
The light used for the experiments is not visible: it is terahertz radiation with a wavelength of the order of one millimetre. "The frequency of this radiation equates to the clock frequency that the next but one generation of computers may perhaps achieve", explains Pimenov.

"The components of today's computers, in which information is passed only in the form of electrical currents, cannot be fundamentally improved. To replace these currents with light would open up a range of new opportunities."

It is not only in hypothetical new computers that it's important to be able to control beams of radiation precisely with the newly developed light turning mechanism: terahertz radiation is used today for many purposes, for example for imaging methods in airport security technology.

Optical transistors
If light is passed through a polarisation filter, dependent on the polarisation direction, it is either allowed to pass through or is blocked.

The rotation of the beam of light (and thus the electrical potential applied) therefore determines whether a light signal is sent or blocked. "This is the very principle of a transistor", explains Pimenov: "The application of an external voltage determines whether current flows or not, and in our case, the voltage determines whether the light arrives or not." The new invention is therefore the optical equivalent of an electrical transistor.

.


Related Links
TU Vienna
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Solving electron transfer
Lausanne, Switzerland (SPX) Jul 04, 2013
Electron transfer is a process by which an atom donates an electron to another atom. It is the foundation of all chemical reactions, and is of intense research because of the implications it has for chemistry and biology. When two molecules interact, electron transfer takes place in a few quadrillionths (10-15) of a second, or femtoseconds (fsec), meaning that studying this event requires very t ... read more


CHIP TECH
Scientist says Earth may once have been orbited by two moons

Dust hazard for Moon missions: scientists

NASA Seeks Information on Commercial Robotic Lunar Lander Capabilities

Orbiting astronaut controls robot on Earth, testing feasibility of CU-Boulder project on far side of the moon

CHIP TECH
Is Mars mission Indian rocket's silver jubilee flight?

NASA's next Mars rover will advance hunt for past life

Opportunity's Improbable Anniversary

Dry run for the 2020 Mars Mission

CHIP TECH
Space seeds could "benefit" traditional Chinese medicines

Kennedy Facilities Key to NASA's Transition

Voyager 1 Explores Final Frontier Of Our Solar Bubble

NASA's Voyager 1 approaches outer limit of solar system

CHIP TECH
China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

CHIP TECH
Station Astronauts Complete First of Two July Spacewalks

Russia to go ahead with space freighter launch

ISS technology to 'hear' potential leaks

Russian cosmonauts conduct space station tasks in spacewalk

CHIP TECH
Two Rockets Launched From Wallops

Specialists unrelated to Khrunichev to check Proton-M rocket production

Proton Rocket to Stay in Demand Despite Accidents

Premature launch said likely cause of Russian rocket failure

CHIP TECH
Hubble Telescope reveals variation between hot extrasolar planet atmospheres

UCSB Astronomer Uncovers The Hidden Identity Of An Exoplanet

Gas-Giant Exoplanets Cling Close to Their Parent Stars

Astronomers Detect Three 'Super-Earths' in Nearby Star's Habitable Zone

CHIP TECH
Increasing the Speed of Deep Space Communications

Molecular chains hypersensitive to magnetic fields

New Metallic Bubble Wrap Offers Big Benefits Over Other Protective Materials

Inscription found on fragment in Israel said earliest ever found




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement