. | . |
TESS shows North Star undergoes eclipses by Francis Reddy for GSFC News Greenbelt MD (SPX) Jan 07, 2020
Astronomers using data from NASA's Transiting Exoplanet Survey Satellite (TESS) have shown that Alpha Draconis, a well-studied star visible to the naked eye, and its fainter companion star regularly eclipse each other. While astronomers previously knew this was a binary system, the mutual eclipses came as a complete surprise. "The first question that comes to mind is 'how did we miss this?'" said Angela Kochoska, a postdoctoral researcher at Villanova University in Pennsylvania who presented the findings at the 235th meeting of the American Astronomical Society in Honolulu on Jan. 6. "The eclipses are brief, lasting only six hours, so ground-based observations can easily miss them. And because the star is so bright, it would have quickly saturated detectors on NASA's Kepler observatory, which would also mask the eclipses." The system ranks among the brightest-known eclipsing binaries where the two stars are widely separated, or detached, and only interact gravitationally. Such systems are important because astronomers can measure the masses and sizes of both stars with unrivaled accuracy. Alpha Draconis, also known as Thuban, lies about 270 light-years away in the northern constellation Draco. Despite its "alpha" designation, it shines as Draco's fourth-brightest star. Thuban's fame arises from a historical role it played some 4,700 years ago, back when the earliest pyramids were being built in Egypt. At that time, it appeared as the North Star, the one closest to the northern pole of Earth's spin axis, the point around which all of the other stars appear to turn in their nightly motion. Today, this role is played by Polaris, a brighter star in the constellation Ursa Minor. The change happened because Earth's spin axis performs a cyclic 26,000-year wobble, called precession, that slowly alters the sky position of the rotational pole. TESS monitors large swaths of the sky, called sectors, for 27 days at a time. This long stare allows the satellite to track changes in stellar brightness. While NASA's newest planet hunter mainly seeks dimmings caused by planets crossing in front of their stars, TESS data can be used to study many other phenomena as well. A 2004 report suggested that Thuban displayed small brightness changes that cycled over about an hour, suggesting the possibility that the system's brightest star was pulsating. To check this, Timothy Bedding, Daniel Hey, and Simon Murphy at the University of Sydney, Australia, and Aarhus University, Denmark, turned to TESS measurements. In October, they published a paper that described the discovery of eclipses by both stars and ruling out the existence of pulsations over periods less than eight hours. Now Kochoska is working with Hey to understand the system in greater detail. "I've been collaborating with Daniel to model the eclipses and advising on how to bring together more data to better constrain our model." Kochoska explained. "The two of us took different approaches to modeling the system, and we hope our efforts will result in its full characterization." As known from earlier studies, the stars orbit every 51.4 days at an average distance of about 38 million miles (61 million kilometers), slightly more than Mercury's distance from the Sun. The current preliminary model shows that we view the system about three degrees above the stars' orbital plane, which means neither star completely covers the other during the eclipses. The primary star is 4.3 times bigger than the Sun and has a surface temperature around 17,500 degrees Fahrenheit (9,700 C), making it 70% hotter than our Sun. Its companion, which is five times fainter, is most likely half the primary's size and 40% hotter than the Sun. Kochoska says she is planning ground-based follow-up observations and anticipating additional eclipses in future TESS sectors. "Discovering eclipses in a well-known, bright, historically important star highlights how TESS impacts the broader astronomical community," said Padi Boyd, the TESS project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "In this case, the high precision, uninterrupted TESS data can be used to help constrain fundamental stellar parameters at a level we've never before achieved."
Observing time awarded to prepare for data-rich era in astronomy Goleta CA (SPX) Dec 29, 2019 Las Cumbres Observatory partnered with the LSST Corporation and presented a workshop on "Managing Follow-up Observations in the Era of ZTF and LSST." The event was held at the Carnegie Observatories in Pasadena last October, and at the start of December astronomers began observing programs exploiting powerful new tools. The workshop provided an interactive introduction to Target and Observation Management (TOM) systems and specifically the TOM Toolkit software package developed by software enginee ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |