Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Switching On The Freezer's Light
by Staff Writers
Bonn, Germany (SPX) Dec 31, 2010


The APEX telescope in 5100 m above sealevel in Chile where the observations were performed. Image: Berengere Parise

Rare molecular species like H2D+ and D2H+, built from the hydrogen atom H and its heavier isotope deuterium D have gained great attention as probes of cold and dense molecular cloud cores. Since deuterium in space is about 100000 times rarer than hydrogen, these molecules are very difficult to detect.

Thanks to the conjunction of powerful instrumentation at APEX, the "Atacama Pathfinder EXperiment", and an optimal site over 5000 meters above sea level, a research team from the Max Planck Institute for Radio Astronomy in Bonn led by Berengere Parise achieved to map the spatial distribution of the rare D2H+ species in a prestellar core in the Rho Ophiuchi cloud, a star-forming region at a distance of approx. 400 light years.

Stars form in clouds of dust and gas. Before the birth of the star, these clouds are dense and extremely cold (temperatures of about 10 Kelvin, corresponding to approx. -260 degrees Celsius), causing most of the gaseous molecules to be frozen on the surface of solid dust grains, very similarly to the condensation of water vapor onto the solid walls of our kitchen freezers.

The disappearance of most molecules from the gas makes the observation of molecular emission from these objects very difficult. At the same time, these conditions leave room for the development of a peculiar chemistry between the remaining gaseous species, leading to the formation of light molecules containing deuterium atoms, in particular the light triatomic species H2D+ and D2H+.

These peculiar molecules have been the target of many observational searches in the last decade. "This is because their emission can help astronomers to understand the extreme physical conditions in stellar cocoons", says Berengere Parise, the Emmy Noether group leader driving this research project. "They can be considered as the "light in the freezer" and their study is essential for understanding the processes that lead to the formation of stars and their planetary systems."

The observation of these peculiar molecules is however very difficult in view of the high frequency of the light they emit. The wavelength of the emission, shorter than one millimetre and therefore referred to as "submillimetre", lies in a frequency window where the earth atmosphere is transparent only under the best weather conditions. These observations thus require the best submillimetre telescopes located at the best observing sites, conjugated with sensitive instruments that can detect those faint signals.

In this respect, the observation of D2H+ is even more tricky than that of H2D+, because of an even higher frequency. This explains why most observational searches for this molecule have been unsuccessful, leading to date to only one claimed detection with another submillimetre telescope, with an uncertain frequency calibration.

"Our state-of-art CHAMP+ receiver is a very sensitive and powerful submillimetre instrument", says Rolf Gusten, head of the submillimetre technology group of MPIfR where CHAMP+ was built. "It can record astronomical signal on seven different positions of the sky simultaneously, and at two different frequencies." This increased performance compared to previous instruments makes the observation of faint signals on several positions much more efficient. It was therefore possible to observe the emission of D2H+ simultaneously on seven positions in a cold core for the first time, an observation that would have been nearly impossible with a single-pixel instrument, because of the long integration times required for the detection on a single position (a full night of observing time per position).

The observation resulted in a surprising discovery: the molecule was not only detected in the coldest center of the core, as expected by the MPIfR team, but also in some of the side pixels, showing that the distribution of this molecule is extended, and not only confined to the innermost region of the core. This finding is an important piece of information for understanding the peculiar chemistry taking place in the extreme environments from which stars form. It implies that the freezing of molecules on dust grains is extremely efficient, a result that the team will try to confirm by independent observations in the coming months.

"This is the definitive confirmation of the existence of this rare molecule in space", says Berengere Parise. "The information on its spatial distribution provided by the CHAMP+ observation opens the possibility to investigate in details the chemical and physical processes taking place during the early phases of star formation."

Atacama Pathfinder Experiment (APEX) is a collaboration between Max Planck Institut fur Radioastronomie (MPIfR) at 50%, Onsala Space Observatory (OSO) at 23%, and the European Southern Observatory (ESO) at 27% to construct and operate a modified ALMA prototype antenna as a single dish on the high altitude site of Llano Chajnantor. The telescope was manufactured by VERTEX Antennentechnik in Duisburg, Germany. Operation of APEX at Chajnantor is entrusted to ESO.

Carbon Heterodyne Array of the MPIfR (CHAMP+) is a dual-color heterodyne array for spectroscopy in the 450 and 350 m atmospheric windows, built in collaboration with SRON (providing the SIS-mixers) and JPL. The instrument was successfully commissioned in summer 2007. As a Principal Investigator instrument, CHAMP+ is available to the APEX communities in collaboration with MPIfR.

Emmy Noether Programme: The Emmy Noether Programme of the Deutsche Forschungsgemeinschaft (DFG) supports young researchers in achieving independence at an early stage of their scientific careers. Young postdocs gain the qualifications required for a university teaching career during a DFG-funded period, usually lasting five years, in which they lead their own independent junior research group.

.


Related Links
APEX, the "Atacama Pathfinder EXperiment"
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
Brazil To Join The European Southern Observatory
Paris, France (SPX) Dec 31, 2010
The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Se ... read more


SPACE SCOPES
NASA's LRO Creating Unprecedented Topographic Map Of Moon

Apollo 8: Christmas At The Moon

NASA Awards First Half-Million Order In Lunar Data Contract

Total Lunar Eclipse: 'Up All Night' With NASA

SPACE SCOPES
Astrobiology Top 10: Trapped Rover Finds Evidence Of Water On Mars

NASA Spacecraft Provides Travel Tips For Mars Rover

NASA's Next Mars Rover to Zap Rocks With Laser

Opportunity Studying A Football-Field Size Crater

SPACE SCOPES
Astronaut sues over use of historic photo

NASA mulls merging operational divisions

Argentina to record UFO sightings

IBM offers glimpse into the future

SPACE SCOPES
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

SPACE SCOPES
Extension of space station support fails

Paolo Nespoli Arrives At ISS

Dextre's Final Exam Scheduled For December 22-23

Russian rocket docks with space station

SPACE SCOPES
ILS and Satmex Announce The ILS Proton Launch Of Satmex 8

Ariane 5's Sixth Launch Of 2010

Europe launcher puts Spanish, S.Korean satellites into orbit

Arianespace Flight 199: Launch Postponed 24 Hours

SPACE SCOPES
The Final Frontier

First Super-Earth Atmosphere Analyzed

Citizen Scientists Join Search For Earth-Like Planets

Qatar-Led International Team Finds Its First Alien World

SPACE SCOPES
Bob Benson: Tales Of Chilly Research

HISPASAT Satellite Successfully Performs Post-Launch Maneuvers

Skype brings video calls to iPhone, iPod, iPad

Tablets galore on tap at major CES gadget fest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement