Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Super storm tracked by ESA water mission
by Staff Writers
Paris (ESA) Nov 15, 2012


Measurements of surface wind speeds during Hurricane Sandy taken from a NOAA P-3 aircraft and from SMOS. The graph shows excellent agreement between the measurements, demonstrating that SMOS has potential in hurricane forecasting. The black line shows the time series of surface wind speed estimated from the Step Frequent Microwave Radiometer sensor on the NOAA P3-aircraft as it flew into Hurricane Sandy on 28 October (courtesy NOAA/HRD). The red line shows the estimated wind speeds from SMOS along the aircraft track. Credits: Ifremer/NOAA/HRD.

When millions of people are bracing themselves for the onslaught of extreme weather, as much information as possible is needed to predict the strength of the impending storm. ESA's SMOS mission again showed its versatility by capturing unique measurements of Hurricane Sandy. As its name suggests, the Soil Moisture and Ocean Salinity (SMOS) satellite was designed to measure how much moisture is held in soil and how much salt is held in the surface waters of the oceans.

This information is helping to improve our understanding of the water cycle - an essential component of the Earth system.

However, this state-of-the-art Earth Explorer mission has demonstrated that its instrumentation and measuring techniques can be used to offer much more.

Since SMOS has the ability to see through clouds and it is little affected by rain, it can also provide reliable estimates of the surface wind speeds under intense storms.

Parts of the Caribbean and northeastern US are still suffering the aftermath of Hurricane Sandy, which is the largest Atlantic hurricane on record.

Unusually, Sandy was a hybrid storm, tapping energy from the evaporation of seawater like a hurricane and from different air temperatures like a winter storm. These conditions generated a super storm that spanned an incredible 1800 km.

As it orbited above, the satellite intercepted parts of Hurricane Sandy at least eight times as the storm swept over Jamaica and Cuba around 25 October, until its landfall in New Jersey, US, four days later.

The data from these encounters have been used to estimate the speed of the wind over the ocean's surface.

SMOS carries a novel microwave sensor to capture images of 'brightness temperature'. These images correspond to radiation emitted from the surface of Earth, which are then used to derive information on soil moisture and ocean salinity.

Strong winds over oceans whip up waves and whitecaps, which in turn affect the microwave radiation being emitted from the surface. This means that although strong storms make it difficult to measure salinity, the changes in emitted radiation can, however, be linked directly to the strength of the wind over the sea.

This method of measuring surface wind speeds was developed by scientists at the French Research Institute for Exploration of the Sea and Collect Localisation Satellites, CLS, within ESA's Earth Observation Support to Science Element programme.

The method was originally used during Hurricane Igor in 2010, but has again proven accurate. During Hurricane Sandy, SMOS data compare well with realtime measurements from meteorological buoys as the super storm passed between the coast of the US and the Bermuda Islands.

Moreover, NOAA's Hurricane Research Division flew a P-3 aircraft seven times into Hurricane Sandy to gather measurements of surface wind speeds, rain and other meteorological parameters. One of these airborne campaigns coincided with an overpass of the satellite.

Keeping in mind the significantly differing sampling characteristics between the SMOS radiometer and the aircraft sensor, there was excellent agreement in the measurements. Both instruments consistently detected a wind band 150 km south of the hurricane eye, with a speed of just over 100 km/h.

Being able to measure ocean surface wind in stormy conditions with the synoptic and frequent coverage of SMOS is paramount for tracking and forecasting hurricane strength.

Although ESA's Earth Explorers are developed to address specific scientific issues, they continue to demonstrate their versatility.

.


Related Links
SMOS at ESA
Ifremer-Cersat Salinity Center
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Geologist calls for advances in restoration sedimentology
Bloomington IN (SPX) Nov 09, 2012
Rapid advances in the new and developing field of restoration sedimentology will be needed to protect the world's river deltas from an array of threats, Indiana University Bloomington geologist Douglas A. Edmonds writes in the journal Nature Geoscience. The commentary, published this week in the November issue, addresses the fact that land is disappearing from river deltas at alarming rate ... read more


WATER WORLD
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

WATER WORLD
Rover's 'SAM' Lab Instrument Suite Tastes Soil

Survey At 'Matijevic Hill' Wrapping Up

Mars orbiter back online after system swap

What Arctic Rocks Say About Mars: An Interview with Hans Amundsen

WATER WORLD
SciTechTalk: All work and no play?

Get some bed rest - all 21 days of it

Latest China military hardware displayed at airshow

Obama Win Keeps NASA's Space Plans on Course

WATER WORLD
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

WATER WORLD
Russia restores space contact after cable rupture

Russia loses contact with satellites, space station

Cut in Russian link to space station not serious: NASA

Crew Prepares for Spacewalk After Progress Docks

WATER WORLD
Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

Ariane 5 is poised for Arianespace's launch with the EUTELSAT 21B and Star One C3 satellites

Ariane 5 orbits EUTELSAT 21B and Star One C3 satellites

WATER WORLD
Lost in Space: Rogue Planet Spotted?

Lowell Astronomer, Collaborators Point The Way For Exoplanet Search

Lonely planet: Orphan world spotted in deep space

Discovery of a Giant Gap in the Disk of a Sun-like Star May Indicate Multiple Planets

WATER WORLD
Raytheon submits Space Fence proposal to the USAF

Larger version of Kindle Fire tablet unleashed

Lockheed Martin Submits Space Fence Radar Proposal to USAF to Detect and Track Orbital Objects

Chinese LED firm plans record investment in Taiwan




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement