. | . |
Summer melt-driven streams on Greenland's ice sheet brought into focus by Staff Writers Eugene OR (SPX) Apr 07, 2016
Erosion by summertime melt-driven streams on Greenland's ice sheet shapes landscapes similarly to, but much faster than, rivers do on land, says a University of Oregon geologist. The approach used to study the ice sheet should help to broaden scientific understanding of melt rates and improve projections about glacial response to climate change, says Leif Karlstrom, a professor in the UO Department of Geological Sciences. The study, online ahead of print in the journal Geophysical Research Letters, also found that the topography of Greenland's bedrock below the slowly flowing ice sheet has a role in the formation of basins in the ice above as high-elevation streams make their way downward toward the sea. "How fast is the ice sheet melting, and how much the melt will contribute to rising sea levels are important questions," Karlstrom said. "It is important to quantify the melt rate, but that is not easy. Our study allows us to use geometric characteristics of the channel network - their patterns on the landscape - as a diagnostic tool." Projections on sea-level rise, such as those done with remote sensing or satellite observations, he said, have been difficult to determine accurately because melt rates vary widely each year, based on such factors as summer temperatures and elevations across the ice sheet. In the study, Karlstrom and Kang Yang of the University of California, Los Angeles analyzed high-resolution satellite imagery from NASA digital elevation models that let them see the slope of the ice sheet and underlying bedrock. They focused on stream channels at four levels of the ice sheet, from 1,000 meters (3,280 feet) to 1,600 meters (5,249 feet), of southwest Greenland. Geometrical characteristics of these streams - called supraglacial channels because they occur on the ice surface - mimic features often found for rivers on land. Such similarities of erosion patterns on ice and land, despite having different mechanisms, came as a surprise, Karlstrom said. On the ice sheet surface, erosion occurs as meltwater streams carve drainage channels by melting underlying ice. On land, rivers carve drainage channels by pushing and plucking sediment as they flow toward the sea, cutting down as the land surface uplifts due to tectonic activity. Geologists who study geomorphology - how landscapes form - now have a virtual real time model to test theories of landscape evolution, Karlstrom said. River erosion on land occurs over millions of years, but streams on the ice sheet carve their routes much more rapidly. In the study, researchers documented daily incision by flowing meltwater of up to 10 centimeters (4 inches). "It's lower elevations at the margins of the ice sheet that experience the most melt," Karlstrom said. River erosion stops each year when freezing temperatures return. Frozen channels from previous years remain visible, providing a yearly history of erosion patterns much like tree rings reflect age, he said. In addition to using glacial melt to test theories of land-based geological processes, the researchers suggest an application to studies of other planets. Research paper: Fluvial supraglacial landscape evolution on the Greenland Ice Sheet
Related Links University of Oregon Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |