. | . |
Success by deception by Staff Writers Zurich, Switzerland (SPX) Feb 14, 2017
When computers independently identify bodies of water and their outlines in satellite images, or beat the world's best professional players at the board game Go, then adaptive algorithms are working in the background. Programmers supply these algorithms with known examples in a training phase: images of bodies of water and land, or sequences of Go moves that have led to success or failure in tournaments. Similarly to how our brain nerve cells produce new networks during learning processes, the special algorithms adapt in the learning phase based on the examples presented to them. This continues until they are able to differentiate bodies of water from land in unknown photos, or successful sequences of moves from unsuccessful ones. Until now, these artificial neural networks have been used in machine learning with a known decision-making criterion: we know what a body of water is and which sequences of moves were successful in Go tournaments.
Separating wheat from chaff Questions of this kind arise in science: for example, the method could be useful for analysis of measurements from particle accelerators or astronomical observations. Physicists could thus filter out the most promising measurements from their often unmanageable quantities of measurement data. Pharmacologists could extract molecules with a certain probability of having a specific pharmaceutical effect or side-effect from large molecular databases. And data scientists could sort huge masses of disordered data ripples and obtain usable information (data mining).
Search for a boundary In order to locate this boundary, the scientists developed the "act as if" principle: taking data from quantum systems, they established an arbitrary boundary based on one parameter and used it to divide the data into two groups. They then trained an artificial neural network by pretending to it that one group reached a state of equilibrium while the other did not. Thus, the researchers acted as if they knew where the boundary was.
Scientists confused the system The researchers were able to show that this sorting performance depends on the location of the boundary. Evert van Nieuwenburg, a doctoral student in Huber's group, explains this as follows: "By choosing to train with a boundary far away from the actual boundary (which I don't know), I am able to mislead the network. Ultimately we're training the network incorrectly - and incorrectly trained networks are very bad at classifying data." However, if by chance a boundary is chosen close to the actual boundary, a highly efficient algorithm is produced. By determining the algorithm's performance, the researchers were able to track down the boundary between quantum systems that reach equilibrium and those that do not: the boundary is located where the network's sorting performance is highest. The researchers also demonstrated the capabilities of their new method using two further questions from theoretical physics: topological phase transitions in one-dimensional solids and the Ising model, which describes magnetism inside solids.
Categorisation without prior knowledge If a neural network is trained by telling it that the dividing line lies somewhere in the red region, then this will confuse the network. "You try to teach the network that blue and reddish balls are the same and ask it to differentiate between red and red balls, which it simply isn't able to do," says Huber. On the other hand, if you place the boundary in the violet colour spectrum, the network learns an actual difference and sorts the balls into red and blue groups. However, one does not need to know in advance that the dividing line should be in the violet region. By comparing the sorting performance at a variety of chosen boundaries, this boundary can be found with no prior knowledge. van Nieuwenburg EPL, Liu YH, Huber SD: Learning phase transitions by confusion. Nature Physics, 13 February 2017, doi: 10.1038/nphys4037
Related Links ETH Zurich All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |