![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Aug 08, 2016
Coastal waters and near-shore groundwater supplies along more than a fifth of coastlines in the continental United States are vulnerable to contamination from previously hidden underground transfers of water between the oceans and land, finds a new study by researchers at The Ohio State University, Columbus, and NASA's Jet Propulsion Laboratory, Pasadena, California. The study, published online in the journal Science, offers the first-ever map of the underground flows that connect fresh groundwater beneath the continental United States and seawater in the surrounding oceans. The map highlights areas most vulnerable to degraded water quality from these flows now and in the future. The researchers combined U.S. topographic data and NASA climate models to identify key inland regions that contribute groundwater and contaminants to the coast. They examined rainfall, evaporation rates and the amount of known surface runoff to calculate the missing portion of water that was running out below ground, then melded those results with terrain and land-use data to identify where the water ended up. The team was able to learn more about the previously hidden water exchanges via computer analyses, without extensive and costly field surveys. Audrey Sawyer, assistant professor of Earth Sciences at The Ohio State University and leader of the study, said that while scientists have long known that freshwater and seawater mix unseen below ground, until now they hadn't been able to pinpoint exactly where it was happening, or how much, except in limited locations. "We're all pretty familiar with the idea that rain falls on land and flows out to the ocean in rivers, but there's another, hidden component of rainfall that infiltrates the ground near the coast and spills into the ocean below sea level," Sawyer said. "It's known as 'submarine groundwater discharge.' Freshwater flows out to sea, and vice versa. Urbanization, agricultural development, climate and topography all affect how much water flows in either direction, and the exchange has a big impact on both onshore groundwater that we drink and offshore seawater where we swim and fish."
What Areas Are Most Vulnerable? In contrast, the team found that another 9 percent of coastline - including confirmed locations such as Southeastern Florida, Southern California and Long Island, New York - are especially susceptible to the opposite threat: contamination from sea to land. In these areas, saltwater intrudes inland and infiltrates the fresh groundwater supply. "It takes only a small amount of salt water to render drinking water non-potable, so saltwater invasion is a big concern for water resource management in coastal areas," Sawyer said. The study found Los Angeles and San Francisco are vulnerable to both ocean contamination and saltwater intrusion.
How Much Water is Involved? Still, David explained, the study is significant because it provides the first continental-scale, high-resolution estimate of that 1 percent - a portion which, when compared to the other 99 percent, can be particularly rich in nutrients and other contaminants. "This Ohio State-JPL collaboration has removed the cloak from hidden groundwater transfers between land and sea," he said. For example, the amount of yearly precipitation is similar in the Pacific Northwest and the mid-Atlantic regions, but the study found that underground drainage rates into the ocean were approximately 50 percent higher in the Pacific Northwest because the steep terrain there carries more groundwater to the coastline. The researchers found that land use was critical to discharge in Florida. Sawyer said that she was surprised by the big effect that canals had there. Since the early 20th century, Floridians have constructed thousands of miles of canals along the state's coasts for transportation, irrigation and recreation. The study found that the canals may capture water that would otherwise flow underground and out to sea. The researchers commented that increased urbanization - and the extensive pavement that goes along with it - will also decrease groundwater recharge and ultimate drainage to coastal regions where the population is growing, increasing the likelihood of saltwater intrusion. "That's why we hope others will use our analysis to better plan strategies for coastal land development and groundwater management that help preserve water quality," Sawyer said. "Right now, we've created a map of American coastlines that highlights some previously known as well as unknown areas of vulnerability along the U.S. coastline, but we hope to be able to do it for the world shortly, as data become available." Model data for the study came from the enhanced National Hydrography Dataset NHDPlus, originally built by the U.S. Environmental Protection Agency and U.S. Geological Survey, and now developed by Horizon Systems Corporation in Herndon, Virginia; the North American Land Data Assimilation System from NASA's Goddard Space Flight Center, Greenbelt, Maryland; the Variable Infiltration Capacity Macroscale Hydrologic Model from the University of Washington; the 2011 National Land Cover Database from the Multi-Resolution Land Characteristics Consortium; and the United States 2010 Census.
Related Links Earth at NASA Earth Observation News - Suppiliers, Technology and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |