Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
String field theory could be the foundation of quantum mechanics
by Staff Writers
Los Angeles CA (SPX) Nov 04, 2014


Two USC researchers used string field theory to try to validate quantum mechanics. Image courtesy astrophysics.pro.

Two USC researchers have proposed a link between string field theory and quantum mechanics that could open the door to using string field theory - or a broader version of it, called M-theory - as the basis of all physics.

"This could solve the mystery of where quantum mechanics comes from," said Itzhak Bars, USC Dornsife College of Letters, Arts and Sciences professor and lead author of the paper.

Bars collaborated with Dmitry Rychkov, his Ph.D. student at USC. The paper was published online on Oct. 27 by the journal Physics Letters.

Rather than use quantum mechanics to validate string field theory, the researchers worked backwards and used string field theory to try to validate quantum mechanics.

In their paper, which reformulated string field theory in a clearer language, Bars and Rychov showed that a set of fundamental quantum mechanical principles known as "commutation rules'' may be derived from the geometry of strings joining and splitting.

"Our argument can be presented in bare bones in a hugely simplified mathematical structure," Bars said. "The essential ingredient is the assumption that all matter is made up of strings and that the only possible interaction is joining/splitting as specified in their version of string field theory."

Physicists have long sought to unite quantum mechanics and general relativity, and to explain why both work in their respective domains. First proposed in the 1970s, string theory resolved inconsistencies of quantum gravity and suggested that the fundamental unit of matter was a tiny string, not a point, and that the only possible interactions of matter are strings either joining or splitting.

Four decades later, physicists are still trying to hash out the rules of string theory, which seem to demand some interesting starting conditions to work (like extra dimensions, which may explain why quarks and leptons have electric charge, color and "flavor" that distinguish them from one another).

At present, no single set of rules can be used to explain all of the physical interactions that occur in the observable universe.

On large scales, scientists use classical, Newtonian mechanics to describe how gravity holds the moon in its orbit or why the force of a jet engine propels a jet forward. Newtonian mechanics is intuitive and can often be observed with the naked eye.

On incredibly tiny scales, such as 100 million times smaller than an atom, scientists use relativistic quantum field theory to describe the interactions of subatomic particles and the forces that hold quarks and leptons together inside protons, neutrons, nuclei and atoms.

Quantum mechanics is often counterintuitive, allowing for particles to be in two places at once, but has been repeatedly validated from the atom to the quarks. It has become an invaluable and accurate framework for understanding the interactions of matter and energy at small distances.

Quantum mechanics is extremely successful as a model for how things work on small scales, but it contains a big mystery: the unexplained foundational quantum commutation rules that predict uncertainty in the position and momentum of every point in the universe.

"The commutation rules don't have an explanation from a more fundamental perspective, but have been experimentally verified down to the smallest distances probed by the most powerful accelerators. Clearly the rules are correct, but they beg for an explanation of their origins in some physical phenomena that are even deeper," Bars said.

The difficulty lies in the fact that there's no experimental data on the topic - testing things on such a small scale is currently beyond a scientist's technological ability.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southern California
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Ultracold disappearing act
Houston TX (SPX) Nov 04, 2014
A disappearing act was the last thing Rice University physicist Randy Hulet expected to see in his ultracold atomic experiments, but that is what he and his students produced by colliding pairs of Bose Einstein condensates (BECs) that were prepared in special states called solitons. Hulet's team documented the strange phenomenon in a new study published online this week in the journal Natu ... read more


TIME AND SPACE
China gears up for lunar mission after round-trip success

China examines the three stages of lunar test run

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

TIME AND SPACE
Comet flyby of Mars changed chemistry of atmosphere: NASA

NASA's Curiosity Mars Rover Finds Mineral Match

MAVEN Continues Mars Exploration Begun 50 Years Ago by Mariner 4

You can't get to Mars, but your name can

TIME AND SPACE
Virgin Galactic could resume test flights in six months

Risk-taker Branson battles to protect Virgin brand

Orion Takes Big Step Before Moving to the Launch Pad

India to launch unmanned crew module in December

TIME AND SPACE
China to build global quantum communication network in 2030

China's Lunar Orbiter Makes Safe Landing, First in 40 Years

China's First Lunar Return Mission A Stunning Success

China completes first mission to moon and back

TIME AND SPACE
ISS Agency Heads Issue Joint Statement

International Space Station astronauts put GoPro camera in a floating ball of water

Station Trio Prepares for Departure amid Ongoing Science

Students text International Space Station using a 20-foot antenna

TIME AND SPACE
Japanese Satellites Orbited as Part of Russia-Ukraine Program

Spaceflight partners with JAMSS to loft 8 CubeSats on JAXA mission

India to test fly bigger space vehicle next month

Soyuz Installed at Baikonur, Expected to Launch Wednesday

TIME AND SPACE
NASA's Hubble Surveys Debris-Strewn Exoplanetary Construction Yards

Peering into Planetary Atmospheres

VLTI detects exozodiacal light

Yale finds a planet that won't stick to a schedule

TIME AND SPACE
French watchdog urges no 3D for under sixes

ESA space ferry moves ISS to avoid debris

Lockheed Martin partners for space debris research

EIAST and AUS launch UAE's first CubeSat Mission Nayif-1




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.