. | . |
Stellar wind of old stars reveals existence of a partner by Staff Writers Leuven, Belgium (SPX) Feb 26, 2019
Red giants are old stars that eject gaseous material and solid particles through a stellar wind. Some red giants appeared to lose an exceptionally large amount of mass this way. However, new observations reveal that this is not quite the case. The stellar wind is not more intense than normal, but is affected by a partner that was overlooked until now: a second star that circles the red giant. These are the results of an international study led by Belgian university KU Leuven. Humans don't live long enough to realise it, but stars are also born, they age, and they die. It's a process that takes billions of years. As a star gets older, it becomes bigger, colder, and redder - hence the name 'red giants'. Our sun will also become such a red giant in four and a half billion years. In the final stage of their life, red giants eject their mass - gas and other matter - in the form of a stellar wind. Earlier observations confirmed that red giants lose a lot of mass this way. Twelve mass-loss rate record holders, in particular, have been baffling scientists for decades. These red giants supposedly eject the equivalent of 100 earths per year for 100 to 2,000 years on end. Even astronomically speaking, that's a lot of matter in a short amount of time. This was difficult to explain, says Professor Leen Decin from the KU Leuven Institute of Astronomy: "If you look at the mass of such a star in the next phase of its life, the intense stellar wind doesn't last long enough to account for the mass loss that we've seen. "It was also statistically improbable that we had discovered twelve of these red giants, knowing that what we were seeing was a phase that lasted only hundreds or thousands of years compared with their billion-year-long life. It's like finding a needle in a haystack twelve times." New observations from the ALMA telescope in Chile shed light on what was happening with two of these red giants. "For these stars, the stellar wind forms a spiral. It's an indirect indication that the red giant is not alone, but part of a binary star system. The red giant is the main star with a second star circling it. Both stars affect each other and their environment gravitationally in two ways: on the one hand, the stellar wind is pulled in the direction of the second star and, on the other hand, the red giant itself also wiggles slightly. These movements give the stellar wind a spiral shape." The discovery of a partner star made everything fall into place, says Decin: "We believed that these red giants were record holders for mass-loss rate, but that's not the case. It only seemed as though they were losing a lot of mass because there's an area between the two stars where the stellar wind is much more concentrated due to the gravity of the second star. These red giants don't lose the equivalent of 100 earths per year, but rather 10 of them - just like the regular red giants. As such, they also die a bit more slowly than we first assumed. To rephrase in a positive way: these old stars live longer than we thought." The astronomers are now investigating whether a system with a binary star could also be the explanation for other special red giants. "We believed that many stars lived alone, but we will probably have to adjust this idea. A star with a partner is likely to be more common than we thought," Decin concludes.
In Colliding Galaxies, a Pipsqueak Shines Bright Pasadena CA (JPL) Feb 21, 2019 In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using observations from NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) mission shows that a much smaller object is competing with the two behemoths. The most stunning features of the Whirlpool galaxy - officially known as M51a - are the two long, star-filled "arms" curling a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |