. 24/7 Space News .
STELLAR CHEMISTRY
Stellar thief is the surviving companion to a supernova
by Staff Writers
Greenbelt MD (SPX) Apr 30, 2018

Seventeen years ago, astronomers witnessed supernova 2001ig go off 40 million light-years away in the galaxy NGC 7424, in the southern constellation Grus, the Crane. Shortly after, scientists photographed the supernova with the European Southern Observatory's Very Large Telescope (VLT) in 2002. Two years later, they followed up with the Gemini South Observatory, which hinted at the presence of a surviving binary companion. As the supernova's glow faded, scientists focused Hubble on that location in 2016. They pinpointed and photographed the surviving companion, which was possible only due to Hubble's exquisite resolution and ultraviolet sensitivity. Hubble observations of SN 2001ig provide the best evidence yet that some supernovas originate in double-star systems.

Seventeen years ago, astronomers witnessed a supernova go off 40 million light-years away in the galaxy called NGC 7424, located in the southern constellation Grus, the Crane. Now, in the fading afterglow of that explosion, NASA's Hubble has captured the first image of a surviving companion to a supernova. This picture is the most compelling evidence that some supernovas originate in double-star systems.

"We know that the majority of massive stars are in binary pairs," said Stuart Ryder from the Australian Astronomical Observatory (AAO) in Sydney, Australia and lead author of the study. "Many of these binary pairs will interact and transfer gas from one star to the other when their orbits bring them close together."

The companion to the supernova's progenitor star was no innocent bystander to the explosion. It siphoned off almost all of the hydrogen from the doomed star's stellar envelope, the region that transports energy from the star's core to its atmosphere. Millions of years before the primary star went supernova, the companion's thievery created an instability in the primary star, causing it to episodically blow off a cocoon and shells of hydrogen gas before the catastrophe.

The supernova, called SN 2001ig, is categorized as a Type IIb stripped-envelope supernova. This type of supernova is unusual because most, but not all, of the hydrogen is gone prior to the explosion. This type of exploding star was first identified in 1987 by team member Alex Filippenko of the University of California, Berkeley.

How stripped-envelope supernovas lose that outer envelope is not entirely clear. They were originally thought to come from single stars with very fast winds that pushed off the outer envelopes. The problem was that when astronomers started looking for the primary stars from which supernovas were spawned, they couldn't find them for many stripped-envelope supernovas.

"That was especially bizarre, because astronomers expected that they would be the most massive and the brightest progenitor stars," explained team member Ori Fox of the Space Telescope Science Institute in Baltimore. "Also, the sheer number of stripped-envelope supernovas is greater than predicted." That fact led scientists to theorize that many of the primary stars were in lower-mass binary systems, and they set out to prove it.

Looking for a binary companion after a supernova explosion is no easy task. First, it has to be at a relatively close distance to Earth for Hubble to see such a faint star. SN 2001ig and its companion are about at that limit. Within that distance range, not many supernovas go off. Even more importantly, astronomers have to know the exact position through very precise measurements.

In 2002, shortly after SN 2001ig exploded, scientists pinpointed the precise location of the supernova with the European Southern Observatory's Very Large Telescope (VLT) in Cerro Paranal, Chile. In 2004, they then followed up with the Gemini South Observatory in Cerro Pachon, Chile. This observation first hinted at the presence of a surviving binary companion.

Knowing the exact coordinates, Ryder and his team were able to focus Hubble on that location 12 years later, as the supernova's glow faded. With Hubble's exquisite resolution and ultraviolet capability, they were able to find and photograph the surviving companion - something only Hubble could do.

Prior to the supernova explosion, the orbit of the two stars around each other took about a year.

When the primary star exploded, it had far less impact on the surviving companion than might be thought. Imagine an avocado pit - representing the dense core of the companion star - embedded in a gelatin dessert - representing the star's gaseous envelope. As a shock wave passes through, the gelatin might temporarily stretch and wobble, but the avocado pit would remain intact.

In 2014, Fox and his team used Hubble to detect the companion of another Type IIb supernova, SN 1993J. However, they captured a spectrum, not an image. The case of SN 2001ig is the first time a surviving companion has been photographed. "We were finally able to catch the stellar thief, confirming our suspicions that one had to be there," said Filippenko.

Perhaps as many as half of all stripped-envelope supernovas have companions - the other half lose their outer envelopes via stellar winds. Ryder and his team have the ultimate goal of precisely determining how many supernovas with stripped envelopes have companions.

Their next endeavor is to look at completely stripped-envelope supernovas, as opposed to SN 2001ig and SN 1993J, which were only about 90 percent stripped. These completely stripped-envelope supernovas don't have much shock interaction with gas in the surrounding stellar environment, since their outer envelopes were lost long before the explosion. Without shock interaction, they fade much faster. This means that the team will only have to wait two or three years to look for surviving companions.

In the future, they also hope to use the James Webb Space Telescope to continue their search.

Research paper


Related Links
Goddard Space Flight Center
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
To see the first-born stars of the universe
Tempe AZ (SPX) Apr 26, 2018
About 200 to 400 million years after the Big Bang created the universe, the first stars began to appear. Ordinarily stars lying at such a great distance in space and time would be out of reach even for NASA's new James Webb Space Telescope, due for launch in 2020. However, astronomers at Arizona State University are leading a team of scientists who propose that with good timing and some luck, the Webb Space Telescope will be able to capture light from the first stars to be born in the universe. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
2020 Decadal Survey Missions: At a Glance

Simulated Countdown Another Step Toward Exploration Mission-1

NASA upgrades Space Station emergency communications ground stations

China's 'makers' battle mistrust in hi-tech community

STELLAR CHEMISTRY
Vostochny Cosmodrome preps for first tourist visit

Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

US Air Force awards nearly $1 bn for hypersonic missile

STELLAR CHEMISTRY
Bernese Mars camera CaSSIS sends first colour images from Mars

A Yellowstone guide to life on Mars

ESA and NASA to investigate bringing martian soil to Earth

Opportuity Mars rover looking for a path of less resistance

STELLAR CHEMISTRY
China outlines roadmap for deep space exploration

First China Aerospace Conference to be held on April 24

Across China: Rocket launch brings back fortune to locals

China unveils underwater astronaut training suit

STELLAR CHEMISTRY
Aerospace highlights lessons from Public-Private Partnerships in space

ESA teams ready for space

Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

STELLAR CHEMISTRY
Cheap 3-D printer can produce self-folding materials

India recalls GSAT-11 satellite from launch site for more tests

NanoRacks space station airlock "Bishop" completes CDR, moves to fab stage

Angola loses first satellite, plans successor

STELLAR CHEMISTRY
Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

Giant group of octopus moms discovered in the deep sea

Droids beat astronomers in predicting survivability of exoplanets

STELLAR CHEMISTRY
What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.