Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Stanford scientists develop high-efficiency zinc-air battery
by Mark Shwartz for Precourt Institute for Energy at Stanford University.
Stanford CA (SPX) May 30, 2013


This is a rechargeable zinc-oxide battery in a tri-electrode configuration with cobalt-oxide/carbon nanotube and iron-nickel/layered double hydroxide catalysts for charge and discharge, respectively. Credit: Yanguang Li, Stanford University.

Stanford University scientists have developed an advanced zinc-air battery with higher catalytic activity and durability than similar batteries made with costly platinum and iridium catalysts. The results, published in the May 7 online edition of the journal Nature Communications, could lead to the development of a low-cost alternative to conventional lithium-ion batteries widely used today.

"There have been increasing demands for high-performance, inexpensive and safe batteries for portable electronics, electric vehicles and other energy storage applications," said Hongjie Dai, a professor chemistry at Stanford and lead author of the study. "Metal-air batteries offer a possible low-cost solution."

According to Dai, most attention has focused on lithium-ion batteries, despite their limited energy density (energy stored per unit volume), high cost and safety problems. "With ample supply of oxygen from the atmosphere, metal-air batteries have drastically higher theoretical energy density than either traditional aqueous batteries or lithium-ion batteries," he said. "Among them, zinc-air is technically and economically the most viable option."

Zinc-air batteries combine atmospheric oxygen and zinc metal in a liquid alkaline electrolyte to generate electricity with a byproduct of zinc oxide. When the process is reversed during recharging, oxygen and zinc metal are regenerated.

"Zinc-air batteries are attractive because of the abundance and low cost of zinc metal, as well as the non-flammable nature of aqueous electrolytes, which make the batteries inherently safe to operate," Dai said.

"Primary (non-rechargeable) zinc-air batteries have been commercialized for medical and telecommunication applications with limited power density. However, it remains a grand challenge to develop electrically rechargeable batteries, with the stumbling blocks being the lack of efficient and robust air catalysts, as well as the limited cycle life of the zinc electrodes."

Active and durable electrocatalysts on the air electrode are required to catalyze the oxygen-reduction reaction during discharge and the oxygen-evolution reaction during recharge. In zinc-air batteries, both catalytic reactions are sluggish, Dai said.

Recently, his group has developed a number of high-performance electrocatalysts made with non-precious metal oxide or nanocrystals hybridized with carbon nanotubes. These catalysts produced higher catalytic activity and durability in alkaline electrolytes than catalysts made with platinum and other precious metals.

"We found that similar catalysts greatly boosted the performance of zinc-air batteries," Dai said. both primary and rechargeable. "A combination of a cobalt-oxide hybrid air catalyst for oxygen reduction and a nickel-iron hydroxide hybrid air catalyst for oxygen evolution resulted in a record high-energy efficiency for a zinc-air battery, with a high specific energy density more than twice that of lithium-ion technology."

The novel battery also demonstrated good reversibility and stability over long charge and discharge cycles over several weeks. "This work could be an important step toward developing practical rechargeable zinc-air batteries, even though other challenges relating to the zinc electrode and electrolyte remain to be solved," Dai added.

Other authors of the Nature Communications study are Yanguang Li (lead author), Ming Gong, Yongye Liang, Ju Feng, Ji-Eun Kim, Hailiang Wang, Guosong Hong and Bo Zhang of the Stanford Department of Chemistry.

.


Related Links
Stanford University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Tests lead to doubling of fuel cell life
Burnaby, Canada (SPX) May 27, 2013
Researchers working to improve durability in fuel cell powered buses, including a team from Simon Fraser University, have discovered links between electrode degradation processes and bus membrane durability. The team is quantifying the effects of electrode degradation stressors in the operating cycle of the bus on the membrane lifetime. The findings of the study, led by SFU graduate ... read more


ENERGY TECH
Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

Bright Explosion on the Moon

ENERGY TECH
Radiation on trip to Mars near lifetime limit

Opportunity Departing 'Cape York'

Bacterium from Canadian High Arctic and life on Mars

Curiosity Drills Second Rock Target

ENERGY TECH
Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

French government posts space counsellor in Bangalore

3D Printing: Food in Space

Chinese group bids for Club Med holidays: firms

ENERGY TECH
Shopping for Shenzhou

Waiting for Shenzhou 10

China launches communications satellite

On Course for Shenzhou 10

ENERGY TECH
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

ENERGY TECH
First Light Angara Rocket Ready for Launch

Russia to launch 12 Proton-M rockets in 2013

Russian Spacecraft Manufacturer to Make Four Launches in 2014

Electric Propulsion

ENERGY TECH
Big Weather on Hot Jupiters

Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

ENERGY TECH
NASA, Researchers Use Weightlessness of Space to Design Better Materials for Earth

Helicopter-light-beams - a new tool for quantum optics

Just how secure is quantum cryptography

One Year Anniversary of KOMPSAT-3 Launch




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement