Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Stable Electrodes for Improving Printed Electronics
by Staff Writers
Atlanta, GA (SPX) Apr 24, 2012


To illustrate the new method, Kippelen and his peers evaluated the polymers' performance in organic thin-film transistors and OLEDs. They've also built a prototype: the first-ever, completely plastic solar cell.

Imagine owning a television with the thickness and weight of a sheet of paper. It will be possible, someday, thanks to the growing industry of printed electronics. The process, which allows manufacturers to literally print or roll materials onto surfaces to produce an electronically functional device, is already used in organic solar cells and organic light-emitting diodes (OLEDs) that form the displays of cellphones.

Although this emerging technology is expected to grow by tens of billions of dollars over the next 10 years, one challenge is in manufacturing at low cost in ambient conditions.

In order to create light or energy by injecting or collecting electrons, printed electronics require conductors, usually calcium, magnesium or lithium, with a low-work function.

These metals are chemically very reactive. They oxidize and stop working if exposed to oxygen and moisture. This is why electronics in solar cells and TVs, for example, must be covered with a rigid, thick barrier such as glass or expensive encapsulation layers.

However, in new findings published in the journal Science, Georgia Tech researchers have introduced what appears to be a universal technique to reduce the work function of a conductor.

They spread a very thin layer of a polymer, approximately one to 10 nanometers thick, on the conductor's surface to create a strong surface dipole. The interaction turns air-stable conductors into efficient, low-work function electrodes.

The commercially available polymers can be easily processed from dilute solutions in solvents such as water and methoxyethanol.

"These polymers are inexpensive, environmentally friendly and compatible with existent roll-to-roll mass production techniques," said Bernard Kippelen, director of Georgia Tech's Center for Organic Photonics and Electronics (COPE).

"Replacing the reactive metals with stable conductors, including conducting polymers, completely changes the requirements of how electronics are manufactured and protected. Their use can pave the way for lower cost and more flexible devices."

To illustrate the new method, Kippelen and his peers evaluated the polymers' performance in organic thin-film transistors and OLEDs. They've also built a prototype: the first-ever, completely plastic solar cell.

"The polymer modifier reduces the work function in a wide range of conductors, including silver, gold and aluminum," noted Seth Marder, associate director of COPE and professor in the School of Chemistry and Biochemistry. "The process is also effective in transparent metal-oxides and graphene."

COPE is a collaborative effort of Georgia Tech professors in the Colleges of Engineering, Sciences and the Ivan Allen College of Liberal Arts. The center is working on the next generation of electronic devices in order to save energy, reduce costs, increase national security and enhance the quality of the environment.

Researchers from the groups of Georgia Tech professors Jean-Luc Bredas and Samuel Graham, as well as Princeton University Professor Antoine Kahn, also contributed to the new study.

.


Related Links
Georgia Institute of Technology
COPE
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
A new kind of quantum junction
Tokyo, Japan (SPX) Apr 24, 2012
A new type of quantum bit called a "phase-slip qubit", devised by researchers at the RIKEN Advanced Science Institute and their collaborators, has enabled the world's first-ever experimental demonstration of coherent quantum phase slip (CQPS). The groundbreaking result sheds light on an elusive phenomenon whose existence, a natural outcome of the hundred-year-old theory of superconductivit ... read more


CHIP TECH
Winners of 19th Annual NASA Great Moonbuggy Race Announced

Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

Russia Plans to Launch Lunar Rovers to Moon after 2020

CHIP TECH
Mars Astronauts Could Risk DNA Damage

Asteroid sites hint at life on Mars

WSU astrobiologist proposes fleet of probes to seek life on Mars

People to Land on Mars in Next 40 Years

CHIP TECH
Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

NASA Announces 16th Undersea Exploration Mission Dates and Crew

Dwindling US Space Budget Worries Scientist

CHIP TECH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

CHIP TECH
Russian cargo ship docks at International Space Station

Russian Cargo Craft Launches to Station

Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

CHIP TECH
Assembly begins for the third Ariane 5 to be launched in 2012

ILS Proton Successfully Launches Y1B Satellite For Yahsat

SpaceX aims for May 7 launch to ISS

SpaceX delays first private launch to space station

CHIP TECH
Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

CHIP TECH
US commission says iPhone infringes Motorola patent

Skype debuts on PlayStation Vita game handsets

Google joins 'cloud' data storage trend

Mechanical tests for SHEFEX




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement