|
. | . |
|
by Staff Writers Lausanne, Switzerland (SPX) Jul 21, 2015
In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought. Electrons spin around atoms, but also spin around themselves, and can cross over from one spin state to another. A property which can be exploited for next-generation hard drives. However, "spin cross-over" has been considered too slow to be efficient. Using ultrafast measurements, EPFL scientists have now shown for the first time that electrons can cross spins at least 100,000 times faster than previously thought. Aside for its enormous implications for fundamental physics, the finding can also propel the field of spintronics forward. The study is published in Nature Chemistry.
The rules of spin Spin cross-over is already used in many technologies, e.g. optical light-emitting devices (OLED), energy conversion systems, and cancer phototherapy. Most prominently, spin cross-over is the basis of the fledgling field of spintronics. The problem is that spin cross-over has been thought to be too slow to be efficient enough in circuits.
Spin cross-over is extremely fast "Time resolution has always been a limitation," says Chergui. "Over the years, labs have used techniques that could only measure spin changes to a billionth to a millionth of a second. So they thought that spin cross-over happened in this timeframe." Chergui's lab focused on materials that show much promise in spintronics applications. In these materials, electrons jump through four spin-states: from 0 to 1 to 2. In 2009, Chergui's lab pushed the boundaries of time resolution to show that this 0-2 "jump" can happen within 150 femtoseconds - suggesting that it was a direct event. Despite this, the community still maintained that such spin cross-overs go through intermediate steps. But Chergui had his doubts. Working with his postdoc Gerald Aubock, they used the lab's world-recognized expertise in ultrafast spectroscopy to "crank up" the time resolution. Briefly, a laser shines on the material sample under investigation, causing its electrons to move. Another laser measures their spin changes over time in the ultraviolet light range. The finding essentially demolishes the notion of intermediate steps between spin jumps, as it does not allow enough time for them: only 50 quadrillionths of a second to go from the "0" to the "2" spin state. This is the first study to ever push time resolution to this limit in the ultraviolet domain. "This probably means that it's even faster," says Chergui. "But, more importantly, that it is a direct process."
From observation to explanation It is now up to theoreticians to develop a new model for ultrafast spin changes. On the experimental side of things, Chergui's lab is now focusing on actually observing electrons shuttling inside the molecules. This will require even more sophisticated approaches, such as core-level spectroscopy. Nonetheless, the study challenges ideas about spin cross-over, and might offer long-awaited solutions to the limitations of spintronics. Aubock G, Chergui M. Sub-50 fs photo-induced spin cross-over in [Fe(bpy)3]2+. Nature Chemistry 20 July 2015. DOI: 10.1038/nchem.2305
Related Links Ecole Polytechnique Federale de Lausanne Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |