. | . |
Spin current on topological insulator detected at room temps by Staff Writers Goteborg, Sweden (SPX) Dec 12, 2015
Researchers at Chalmers University of Technology have for the first time reported the electrical detection of spin current on topological insulator surfaces at room temperature by employing a ferromagnetic detector. The findings have been published in the journal Nano Letters. Solid-state materials were conventionally divided into three different classes such as conductors, semiconductors and insulators. Recently, a new class of materials has been proposed and realized, called "topological insulators", where both the insulating and conducting properties can co-exist in the same material. Topological insulators are insulators inside the bulk, but are conducting on their surfaces with less resistance than the conventional materials. This is possible due to their uniquely strong interaction between electrons' spin and orbital angular momentum with their time reversal symmetry. The interaction is so strong that the spin angular momentum of the electrons is locked perpendicular to their momentum, and generates a spontaneous spin polarized current on the surfaces of topological insulators by applying an electric field. These spin polarized conducting electrons on the surface have no mass and are extremely robust against most perturbations from defects or impurities, and can enable the propagation of dissipationless spin currents. The researchers from Chalmers detected the surface spin current electrically on a topological insulator called bismuth selenide (Bi2Se3) for the first time at room temperature employing ferromagnetic tunnel contacts. Such contacts are known to be very sensitive to spin polarization and probe the Bi2Se3 surface by measuring the magnetoresistance due to parallel and anti-parallel alignment of the spin current and the ferromagnet magnetization direction. "The key factors for these room temperature results are good quality topological insulator crystals and spin sensitive ferromagnetic tunnel contacts carefully prepared by clean room nanofabrication", explains Dr. Andre Dankert, the lead author of the paper. Earlier reports in this research field were limited only to measurements at cryogenic temperatures. From the results on the magnitude of the spin signal, its sign, and control experiments, using different measurement configurations, angles and interface conditions, the author's rule out other known physical effects. "Our results show the electrical accessibility of spin currents on topological insulator surfaces up to room temperature and pave the way for further developments, which can be useful for spin based information processing in the future", says associate professor Saroj Dash, who leads the research group. However, Saroj Dash cautions that the research on development of these new class materials and measurement techniques are still in its early stage and more experiments are required for further understanding. Article "Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators"
Related Links Chalmers University of Technology Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |