|
. | . |
|
by Staff Writers Nottingham UK (SPX) Jul 10, 2012
The effect of spaceflight on a microscopic worm - Caenorhabditis elegans (C. elegans) - could help it to live longer. The discovery was made by an international group of scientists studying the loss of bone and muscle mass experienced by astronauts after extended flights in space. The results of this research have been published, July 5 2012, in the online journal Scientific Reports. Dr Nathaniel Szewczyk, from The University of Nottingham, was part of the ICE-FIRST project which involved scientists from Japan, France, the US, and Canada. They discovered that spaceflight suppressed accumulation of toxic proteins that normally accumulate within aging muscle. They also discovered a group of genes that are expressed at lower levels during spaceflight. When the expression of these same genes were lowered in worms back on Earth the worms lived longer. Dr Szewczyk, an expert in muscle metabolism, said: "We identified seven genes, which were down-regulated in space and whose inactivation extended lifespan under laboratory conditions."
How do these genes play a role in longevity control? "For example, one of the genes we have identified encodes insulin which, because of diabetes, is well known to be associated with metabolic control. In worms, flies, and mice insulin is also associated with modulation of lifespan."
What could this mean for space travellers? Dr Szewczyk's role was to provide expertise in the culturing of worms in CeMM - a special liquid food for worms. Dr Szewczyk transported the samples to and from the Russian launch site and ran a series of 'health' checks to ensure that the tiny astronauts were fit for flying. On their return he helped with the analysis of the data.
Nottingham's space biology lab C. elegans was the first multi-cellular organism to have its genetic structure completely mapped and many of its 20,000 genes perform the same functions as those in humans. Two thousand of these genes have a role in promoting muscle function and 50 to 60 per cent of these have very obvious human counterparts. When the research began Dr Szewczyk was working at NASA. He is now based at The University of Nottingham's MRC and Arthritis Research UK Centre for Musculoskeletal Ageing Research. He is one of the leading scientists studying 'worms in space' and his lab is currently the most productive 'space biology' lab in the UK. The experiment in 2004 involved a consignment of live worms being despatched to the International Space Station (ISS) onboard the Dutch DELTA mission. He uses worms which originate from a rubbish dump in Bristol. C. elegans often feed on decaying fruit and vegetable matter. They have since taken part in five spaceflights to the ISS with the aim of learning more about the effect of microgravity on the physiology of the human body. Notably, in 2003 Dr Szewczyk's C. elegans made the news when they survived the Space Shuttle Columbia disaster. Living in petri dishes and enclosed in aluminium canisters the worms survived re-entry and impact on the ground and were recovered weeks after the disaster. This spaceflight work teaches us things about the body that we couldn't learn on Earth. They have led to the publication of research into how to block muscle degradation using a form of gene therapy in PLoS ONE and publication of a muscle repair mechanism in PLoS Genetics. The work on C. elegans has also established that worms can live and reproduce for at least six months in space. This makes it an ideal and cost-effective experimental system to investigate the effects of long duration and distance space exploration as recently reported in Interface, a journal of The Royal Society. Together these missions have established that the team is not only better able to understand how muscle works on Earth but they are also in a position to send worms to other planets and experiment on them along the way.
Astronaut now being studied Andre Kuipers, the Dutch astronaut who flew the mission in 2004, has just returned from ISS with yet another worm experiment from space for the team at Nottingham and is also, himself, being studied. That experiment, led by Professor Marco Narici, is to study the effects of long-duration spaceflight on human muscle.
Related Links The University of Nottingham, Space Medicine Technology and Systems
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |